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Cuvinte cheie: deep learning, green energy, solar energy, metrics, solar tracker, 
hardware testing, software testing, hash algorithms 
 
Rezumat: În ultimii ani, progresele din domeniul inteligenței artificiale, în special 
în ceea ce privește algoritmii de învățare profundă, au crescut într-un ritm rapid și 
vor continua această tendință pentru anii următori. De la implementări hardware 
până la software, pentru a integra acești algoritmi inspirați de creier în fiecare 
aspect al vieții noastre, studii de cercetare active sunt realizate în diferite industrii. 
Cu toate acestea, datorită faptului că acești algoritmi necesită o cantitate mare de 
timp, energie, date și putere de procesare, impactul lor asupra mediului este o 
problemă definitorie. 

Pentru a rezolva această problemă, în prezenta teză de doctorat construim 
și testăm la nivel software și hardware un tracker solar cu două axe pe care îl 
folosim ca sursă autonomă de energie curată pentru un sistem de învățare 
profundă care clasifică imagini în timp real. Apoi, propunem patru metrici pentru 
evaluarea performanței modelelor și sistemelor de învățare profundă bazate nu 
numai pe precizia acestora, ci și pe consum de energie și cost, după care 
implementăm o aplicație care oferă posibilitatea oricărui utilizator de a folosi 
metricile propuse într-o interfață prietenoasă și rezolvă probleme legate de 
colectarea, curățarea și etichetarea datelor necesare pentru antrenarea modelelor 
de învățare profundă. 

În cele din urmă, am construit și un dispozitiv pentru testarea plăcilor de 
circuite imprimate, care este eficient în ceea ce privește precizia, timpul de testare, 
consumul de energie și costul, precum și am propus un set de tehnici pentru 
îmbunătățirea performanțelor de transfer a unei implementări hardware Secure 
Hash Algorithm-256. 



Abstract 
 

In recent years, advancements in the field of Artificial Intelligence, especially 

regarding Deep Learning algorithms, grew at a rapid pace and will continue this trend 

for the years to come. From hardware to software implementations, active research 

studies are conducted across different industries, in order to integrate these brain-

inspired algorithms in every aspect of our life. However, due to the fact that these 

algorithms require a huge amount of time, energy, data, and processing power, their 

impact on the environment is a defining issue. To solve this problem, considering 

recent „Green AI” efforts that focus on the energy efficiency of AI systems, we propose 

four novel environmentally-friendly metrics for evaluating the performance of Deep 

Learning models and systems based not only on their accuracy but also on their 

energy consumption and cost. 

The current Ph.D. thesis begins by implementing Deep Learning image 

classification applications that solve problems related to fraud and security. By 

observing the huge amount of energy consumption and cost as well as the amount of 

time needed for data curation, we decide to solve these problems using hardware and 

software approaches. For this, we first build and improve a dual-axis solar tracker 

which we use to successfully power a real-time Deep Learning-based system. In order 

to minimize the operation costs of the proposed dual-axis solar tracker and make sure 

that we will be notified as soon as there is a possible malfunction, we implemented 

hardware and software testing methods for detecting possible faults that can appear 

during its operation. Secondly, we implemented a Computer Vision application that 

not only solves the problem related to data collection, cleaning, and labeling with the 

help of Deep Learning but also offers the possibility for anyone to use our proposed 

metrics in a user-friendly interface. 

Finally, we also implemented an affordable and sensorless Flying Probe-

inspired In-Circuit-Tester for testing Printed Circuit Boards which is efficient regarding 

precision, test time, power consumption, and cost as well as a set of techniques for 

improving the throughput performance of a Secure Hash Algorithm-256 hardware 

implementation. 
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1. INTRODUCTION 
 
 

The present Ph.D. Thesis entitled „Powering and Evaluating Deep Learning-
based Systems using Green Energy” describes the research activity carried on 
between 2016 and 2020 in the Department of Computers and Information Technology 
at the Politehnica University of Timisoara. Our work is mainly focused on powering 
Deep Learning (DL)-based systems using green energy as well as on developing 
environmentally-friendly metrics for DL [1] in order to evaluate the performance of 
DL models and systems based not only on their accuracy but also on their energy 
consumption and cost. 

The success of DL in the last years in various Artificial Intelligence (AI) 
applications related to Computer Vision, speech recognition, machine translation, and 
Natural Language Processing (NLP) is mostly based on the recent advances regarding 
computing power and the huge amount of digital data available (e.g. photos). From 
self-driving cars [2] and cancer detection [3] to even arrhythmia detection [4] and 
robotics [5], the performance of DL is outperforming that of humans, showing 
significant improvements related to both speed and accuracy. These improvements 
related to speed and accuracy are happening every year thanks to efforts from both 
academia as well as the industry. On one side, companies are pushing towards 
creating more powerful computing platforms and optimized libraries, whereas, on the 
other side, new specializations and jobs related to DL and Data Science are created, 
these being also ones of the best paid in the industry [6]. 

However, in order to increase the training or the inference speed of such DL 
models, usually, the use of a single Graphics Processing Unit (GPU) is not always 
enough, with some projects even requiring hundreds (i.e. 512) of power-hungry GPUs 
[7]. As a consequence, this results in high energy consumption and cost, which 
ultimately have a negative impact not only on the financial side but also on the 
environment [8, 9, 10], with the work in [9] even proving that the training of a single 
NLP model results in a massive carbon footprint equivalent to the amount of carbon 
emission that five cars have in their lifetime. Additionally, the evaluation of DL models 
and systems is mainly done with traditional metrics such as accuracy or throughput, 
without considering their energy consumption or cost. 

Another key challenge, especially for data scientists is the time spent 
preparing the data. In order to increase the accuracy of DL models, the most amount 
of work time goes into collecting, cleaning, and labeling the data, reaching around 
80% of the total time allocated for a DL project. This not only slows the process of AI 
innovation but can also be very costly, especially when the dataset is very large and 
many people are involved [11]. 

Additionally, because we as researchers owe our present knowledge due to 
past enormous efforts by fellow students, professors, as well as scientists who pushed 
the boundaries and tried their best to share their knowledge, in the domain of test 
engineering, especially in the case of testing Printed Circuit Boards (PCBs), the 
available testing devices are still very expensive [12] and non-existent in engineering-
related schools or universities. This situation not only makes the delicate and 
important process of testing PCBs to be harder to comprehend, but it can also reduce 
the number of possible specialists in the testing domain. 
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Due to the internet, the number of users online, as well as the number of 
electronic devices, increase year after year, thus the security not only of the 
information that is stored and exchanged is of great importance but also that of these 
hardware devices. 

In this Ph.D. thesis, we developed and implemented methods for solving the 
above-mentioned problems by first implementing different novel DL applications that 
solve different problems related to fraud [13, 14] and security [15]. Then, because 
we observed that a real-time DL-based system [15] consumes more energy than their 
non-real-time counterparts, we decided to not only run the same implementation on 
a platform that consumes 5× less energy, but we also wanted to not pay for this 
energy consumption [16]. We achieved this by considering the use of green energy 
and by constructing a novel dual-axis solar tracker that is based on the Cast-Shadow 
principle [17] and which was later modified with minimal costs [16]. We demonstrated 
in [16] that our solar tracker is efficient and, to the best of our knowledge, for the 
first time in literature, it was proved that it is possible to completely use solar energy 
for powering a real-time DL-based system when running inference. 

In order to be aware of any possible faults in our dual-axis solar tracking 
device, we also investigated possibilities to test it at the software and hardware level. 
For this, we implemented a novel White-Box testing technique in [18] and a novel 
Online Built-In Self-Test (OBIST) testing technique in [19], both achieving high fault 
coverage. It is important to mention that, to the best of our knowledge, testing solar 
tracking equipment has also never been done before in literature. 

As mentioned earlier, because we succeeded in making use of green (solar) 
energy for powering a DL-based system [16] and because we want to encourage 
future generations of researchers to consider the impact their DL project can have on 
our environment, we proposed four novel DL metrics [20] that evaluate the 
performance of DL models and systems for both inference and training by taking into 
consideration not only the accuracy but also the energy consumption and cost, 
proving to be more valuable metrics when compared with the existent ones found in 
the literature. We also created a Computer Vision application [21] that incorporates 
the four proposed metrics and offers an easy way to calculate and evaluate the 
performance of DL-based systems. Additionally, the application consists of multiple 
features that make use of DL inference in order to speed-up tasks related to data 
collection, cleaning, and labeling, outperforming existent solutions by a large margin. 

Additionally, in order to offer engineering students a chance to have a hands-
on approach for testing PCBs, we implemented a low-cost and portable PCB testing 
device in the form of a sensorless Flying Probe-Inspired In-Circuit-Tester (FPICT) [22] 
that has a high fault coverage and a very low cost. 

Finally, in order to increase the throughput performance of a Secure Hash 
Algorithm (SHA)-256, we implemented different techniques to speed-up the hash 
generation in hardware [23]. 
 
 

1.1. Motivation 
 

The main philosophy behind this Ph.D. thesis is to make the evaluation of DL 
models and systems possible by using environmentally-friendly metrics. Additionally, 
to significantly reduce the amount of energy consumption and cost of DL-based 
systems as well as to reduce the time needed to collect, clean, and label image 
datasets needed for training DL models. 
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The motivation for Implementing Different DL Applications Related to 
Fraud and Security: First, the demand for transparency, especially regarding money 
transactions in a Supermarket where the price tag of the products doesn’t always 
reflect the price seen on the receipt and customers end up paying the wrong price 
because of incorrect prices on the receipt. Also, on-device inference with high 
accuracy by building our own Optical Character Recognition (OCR) algorithm which is 
resistive to noise and eliminates the need for expensive and commercial cloud-based 
solutions. 

The second reason is the necessity of preventing cultural appropriation by big 
brands from the fashion industry. By implementing a DL-based algorithm, we can 
automate the detection and recognition of traditional motifs with high accuracy and 
reduced processing time. 

The third reason is security and the need for automatically classifying and 
identifying wild and domestic animals present in an area, in order to increase their 
safety as well as that of humans. With the help of DL algorithms, non-intrusive 
identification systems can be developed that can perform animal classification in real-
time from videos or using a webcam, being of great help, especially for researchers 
and farmers. 

The fourth reason was energy consumption and cost. By implementing these 
applications on different platforms, we show the possibility of deploying DL models on 
platforms with lower power consumption and costs. 

The motivation for Building, Testing, and Deploying a Dual-Axis Solar 
Tracker to Power a Self-Sufficient Real-Time DL-based system: First, because 
most of the existent solutions for powering DL-based systems harm the environment 
and the urgent need of alternative energy sources such as green energy is crucial. 
Capturing the maximum potential of solar energy by using a dual-axis type of solar 
tracker that uses no sensors and which, with the help of a blocking system reduces 
the power consumption of the entire solar tracking equipment and maximizes its 
energy gains results in a low-cost and portable solution that eliminates the carbon 
footprint on our environment by using green (solar) energy instead of traditional 
polluting power sources. 

The second reason was the energy cost. By using solar energy, there are 0 
electricity costs. Also, by testing a solar tracker at the software and hardware level, 
high fault coverage can be achieved, at the same time maintaining low costs and 
efficient testing solutions that can minimize also operation costs. 

The motivation for Proposing Environmentally-Friendly Metrics and 
Implementing a DL-based Computer Vision Application: First, existent metrics 
based only on accuracy to evaluate the performance of DL-based systems ignore the 
economic, environmental, and social costs. It is of crucial importance to use 
environmentally-friendly metrics for evaluating DL models and systems in order to 
mitigate climate change. 

The second reason is energy consumption and cost. Different hardware 
platforms and DL models consume different amounts of energy, thus having different 
costs. This is especially the case in AI populated data center workloads where the 
energy consumption and electricity bill costs are very expensive. By using green 
energy, there will be no negative impact on the environment and the cost of training 
or running inference will be 0. 

The third reason is encouraging new researchers to use only green energy for 
powering their DL-based systems. 

The fourth reason is the need for reducing execution time for Data Scientists. 
In order to train a DL image classification model, a huge amount of time (around 80% 
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of the entire time dedicated to a DL project) is lost when huge amounts of images 
need to be collected, cleaned, and labeled. Thus, a DL-based application with a user-
friendly interface is very helpful, especially when having the built-in environmentally-
friendly metrics calculators, being time and costs-efficient. 

The motivation for Implementing a Flying Probe-inspired In-Circuit-
Tester: First, recent efforts in bringing affordable and equal access to education seen 
on the United Nations (UN) agenda, one example being the UN Sustainable 
Development Goals.  

The second reason is the inexistence in the academic environment anywhere 
in the world of an affordable, portable, and user-friendly testing device which can give 
students a chance to have a hands-on experience with the inner workings of a Flying 
Probe Testing (FPT) and the real parameter values of a PCB. 

The third reason is the cost of In-Circuit-Tester (ICT) versions found in the 
industry, which are very expensive. 

The motivation for Implementing an SHA-256 in Hardware: First, the 
need for security, e.g. for servers that offer services based around Internet Protocol 
Security (IPsec) and Secure Sockets Layer (SSL)/Transport Layer Security (TLS) and 
which rely on fast computation when updating hash values. This is especially 
important for DL-based systems that store or exchange sensitive information that 
requires confidentiality, e.g. medical data. 

The second reason is the execution time. By implementing different 
throughput improvement techniques of the SHA-256 in hardware instead of software, 
we relieve the Central Processing Unit (CPU) from latencies that can occur, thus 
optimizing the clock cycle usage. 
 
 

1.2. Contribution and Ph.D. Thesis Outline 
 

We reduce energy consumption and eliminate the electricity costs of a real-
time DL-based system by using solar energy. We also propose environmentally-
friendly metrics for performance evaluation of DL models and systems. Additionally, 
we reduce the time needed for collecting, cleaning, and labeling image datasets. 
Finally, we improve the operation costs and fault coverage of the built electrical 
equipment (dual-axis solar tracker and FPICT) as well as the throughput of a hash 
algorithm hardware implementation. The contributions of this Ph.D. Thesis are 
summarized in Fig.1.1 and are as follows: 
 

 We developed a receipt fraud detection method by using two 
Convolutional Neural Networks (CNNs) models which can recognize 
multiple digits with decimals from pictures taken by a smartphone 
camera. The proposed solution can run on-device and proves to be 
noise-resistant, being able to detect receipt fraud by identifying and 
comparing the prices of the products from the shelf with the prices of 
the products from the final receipt given by the cashier in the 
Supermarket with an overall test accuracy of more than 99% 

 We developed a DL model and implemented a webcam-based system 
that can detect and identify Romanian traditional motifs found on 4 
categories (clothes, ceramics, carpets, and painted eggs). By using 
transfer learning, we achieve 99.4% overall test accuracy and reduced 
webcam processing time 
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 We developed an ecology-oriented system that can classify 34 classes 
representing the most popular species of animals found in domestic 
areas of Europe in real-time from videos or using a webcam, with an 
overall test accuracy of 94.5% for the best (i.e. MobileNetV2) out of 
four trained CNN architectures (VGG-19, InceptionV3, ResNet-50, and 
MobileNetV2) and which can also generate 2 new datasets in real-
time, one dataset containing textual information (animal class name, 
date, time) and one dataset containing images of the identified animal 
classes 

 We implemented a position optimization method for a solar tracker by 
using the Cast-Shadow principle and verifying the software code that 
runs on Arduino UNO. With the help of a novel approach that makes 
use of limit switches and blocking elements, we reduce the overall 
power consumption of the autonomous solar system by 86.93%. 
When compared to a static solar panel, our method shows a 45.77% 
voltage, 48.21% current, and 53.62% power increase, resulting in an 
efficient solution 

 We implemented a White-Box testing technique that tests the 
software code running on a Wi-Fi module of a solar tracker but is also 
capable of giving the operator the ability to remotely control the 
stepper motors movements of the solar tracker. This Wireless-Based 
Software Technique (WBST) achieves a total coverage of 70.12% for 
all targeted errors, resulting in an efficient and low-cost testing 
solution 

 We implemented an OBIST architecture for testing a solar tracking 
device for possible hardware faults during its normal operation by 
identifying its inactive mode (resting state) using an idle state 
detector. The hardware implementation and software simulation 
achieve an average of 93.93% coverage for single bit-flip errors (last 
8 bits, mutant), 100% coverage for single stuck-at-faults (8, 12, and 
16 random bits) as well as 96.96% for all targeted faults, showing 
that the proposed OBIST architecture is efficient with regard to test 
coverage and cost points of view 

 We implemented a self-sufficient solar-powered real-time DL-based 
system that runs inference 100% on solar energy and which is 
composed of an Nvidia Jetson TX2 board and a dual-axis solar tracker 
based on the Cast-Shadow principle. In order to lower the power 
consumption, a software motion detection method is also 
implemented that triggers the inference process only when there is 
substantial movement in the webcam frame. Experiments prove that 
real-time DL-based systems can be powered by solar trackers without 
the need for traditional power plugs or need to pay for electricity bills 

 We introduce four novel DL metrics, two regarding inference called 
Accuracy Per Consumption (APC) and Accuracy Per Energy Cost 
(APEC) and two regarding training called Time to Closest APC 
(TTCAPC) and Time to Closest APEC (TTCAPEC), which take into 
account not only a DL model’s accuracy but also its energy 
consumption, energy cost and the time it takes to train it up to that 
point. Experimental results prove that all four DL metrics are efficient 
in benchmarking, encouraging future DL researchers to adopt and use 
only green energy when powering their DL-based systems 



Introduction 21

 We implemented a DL-based Computer Vision application with 
multiple built-in Data Science-oriented capabilities, mainly for image 
classification tasks that are able to automatically: a) gather images 
needed for training DL models with a built-in search engine crawler; 
b) remove duplicate images; c) sort images using built-in pretrained 
DL models or user’s own trained DL model; d) apply data 
augmentation; e) train a DL classification model; f) evaluate the 
performance of a DL model and hardware by using an accuracy 
calculator as well as the APC, APEC, TTCAPC and TTCAPEC metrics 
calculators. Experimental results show that the proposed Computer 
Vision application has several unique features and advantages, 
proving to be efficient regarding execution time and much easier to 
use when compared to similar applications. The motivation behind 
creating this tool was regarding obtaining our experimental results 
and to also make it available to the scientific community 

 Additionally, we also implemented a hybrid sensorless ICT design by 
combining the features of FPT and the capabilities of a Coordinate 
Measuring Machine (CMM). The experimental results show that the 
proposed FPICT is suitable for smaller sized PCBs and proves efficient 
regarding precision (overall precision of 95.70% for the 
measurements testing), test time (an average of 10.35s for a single-
point test cycle), power consumption (an overall of 3.92W for all 
considered test cases) and cost (around 25 dollars) points of view 
being much more affordable and user-friendly when compared to 
traditional and expensive FPTs found in the industry 

 Finally, we also developed hardware acceleration techniques for an 
SHA-256 algorithm which resulted in up to 18% throughput 
improvement. The first acceleration technique eliminates one clock 
cycle used for hash value update, delivering a higher throughput. The 
second techniques improve the performance by fusing the Carry 
Propagate Adders (CPAs) of the multi-operand adders to speed up the 
generation of the round functions. The third technique has a synthesis 
driven approach that improves the delay balancing in the Carry Save 
Adder (CSA) tree, resulting in a reduced critical path 

 
Chapter 2 presents the theoretical background for a better understanding of 

the research papers that comprise this Ph.D. Thesis and which are presented starting 
with chapter 3. We present some of the neural network architectures, frameworks, 
and analysis of datasets for different DL applications. We also cover a section related 
to hardware and software testing which describes different off-line and on-line testing 
methods we used. Finally, the related works regarding our DL applications, hardware, 
and software testing, low-power hardware platforms, metrics, data collection, and 
labeling as well as regarding hardware implementations of SHAs are also presented. 

Chapter 3 presents 3 different DL image classification applications: a) a novel 
method in detecting receipt fraud by using a smartphone application that makes use 
of an OCR algorithm composed of image processing techniques and CNNs. The 
proposed method successfully detects prices from product price tags as well as 
receipts with high accuracy. Additionally, the proposed CNN models outperform other 
popular open-source OCR algorithms regarding test accuracy on images with cropped 
Product and Receipt prices that contain noise; b) a novel method in identifying 
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Romanian traditional motifs found on 4 categories (clothes, ceramics, carpets, and 
painted eggs) using CNNs. 
 

 
Fig. 1.1. Ph.D. thesis contributions (summarized view). 

 
We also implemented a system that can detect and identify these learned 

motifs through a webcam with high accuracy and reduced processing time; c) a novel 
method of identifying animals that belong to the 34 most popular species found in 
domestic areas of Europe. We implemented a system that can identify these species 
in images, videos, or through a webcam and generate 2 new datasets in real-time, 
one containing textual information about the animal present in front of the webcam, 
and one containing images of the identified animal species. Our method has several 
advantages compared with other related works. This chapter's contents are mainly 
based on our works in [13-15]. 

Chapter 4 presents the construction, testing, and deployment of a dual-axis 
solar tracker in order to power a real-time DL-based system. More exactly: a) a testing 
technique in verifying the software code that runs on an Arduino UNO microcontroller 
which optimizes the position of a solar tracking device by resorting to novel elements 
such as limit switches and blocking elements. Our software method contributed to a 
significant reduction in power consumption and proved the efficiency of automated 
versions of solar panels over static ones; b) a novel White-Box Testing technique 
applied on a solar tracker which tests the software code that runs on a NodeMCU Lua 
ESP8266 Wi-Fi module and proves that is effective from the point of view of fault 
coverage and cost. Additionally, we gain the ability to control directly the stepper 
motor movements of the autonomous solar tracker in a wireless manner; c) a 
hardware testing technique that makes use of an OBIST which intervenes in testing 
the electrical equipment of a solar tracking device for possible hardware faults, aiming 
to minimize the operation costs and being efficient regarding test coverage; d) a novel 
method in powering a real-time DL-based system using 100% green energy by using 
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an Nvidia Jetson TX2 embedded platform and an improved dual-axis solar tracker that 
was connected to a chain of two inverters, one accumulator and one solar charge 
controller. Our software implementation modifications help in detecting the optimum 
GPU memory usage and frames-per-second (fps) to run our DL models without any 
risk of „out of memory” kind of errors and together with a software motion detection 
method, we succeed to reduce the energy consumption of the entire DL-based 
system. This chapter's contents are mainly based on our works in [16-19]. 

Chapter 5 presents the proposed environmentally-friendly metrics for DL as 
well as a Computer Vision application with multiple built-in Data Science-oriented 
capabilities. More exactly: a) the four novel APC, APEC, TTCAPC, and TTCAPEC metrics 
for evaluating the performance of DL models and systems not only regarding the 
accuracy but also their energy consumption and cost, showing that green energy-
powered DL-based systems are evaluated as being much more performant compared 
to existent ones that still use a traditional power grid; b) an application with a user-
friendly interface that solves many problems related to data curation and which offers 
an easy way to evaluate the performance of DL-based systems with the APC, APEC, 
TTCAPC and TTCAPEC metrics calculators. This chapter's contents are mainly based 
on our works in [20, 21]. 

Chapter 6 presents an affordable, portable, and user-friendly FPICT that has 
educational purposes in the domain of test engineering, mainly for testing smaller 
sized PCBs such as Arduino Uno without the need for sensors. The FPICT can easily 
be connected to any computing platform that has a USB port and its C written 
configuration files can easily be modified, providing students easy access to study and 
experiment with the inner workings of an FPT when operating on a real PCB board. 
This chapter's contents are mainly based on our work in [22]. 

Chapter 7 presents several acceleration techniques for improving the 
throughput of SHA-256 hardware implementation. First, the throughput acceleration 
technique eliminates one clock cycle used for hash value update and allows delivering 
a higher throughput. Also, the critical path of a CSA tree structure is considerably 
reduced by using a fast 32-bit Kogge-Stone adder. With the second technique, we 
evaluated alternative multi-operand addition structures and implemented the CPAs of 
the multi-operand adders in a fused manner to speed up the generation of the round 
functions. The synthesis driven approach for arranging the operands’ order (delay 
balancing improvement) in the CSA tree further reduce the critical path and show that 
our solution resonates with the increasing demands for a more secure biometric 
implementation. This chapter's contents are mainly based on our work in [23]. 

Chapter 8 presents the conclusions of this Ph.D. thesis. 
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2. THEORETICAL BACKGROUND 
 
 

In this chapter we will introduce what DL is and the way it works, followed by 
its applications in the real world. Then, we will introduce the Deep Neural Network 
(DNN) architectures, the datasets, and the DL frameworks we used in order to be able 
to train and run inference with the proposed DL models. Also, an introduction to green 
energy is made, especially regarding solar energy and of the dual-axis solar tracking 
devices that are used to gather this type of energy. After that, we will also introduce 
the different types of hardware and software testing methods as well as the hashing 
algorithm we used. Finally, we will present the related works with regard to DL, test 
engineering as well as regarding hardware implementations of SHA-256 algorithms. 
 
 

2.1. About Deep Neural Networks 
 

Today's computer architecture is significantly different regarding processing 
capabilities, organizational structure, and power requirements when compared to the 
human brain. Because of the approaching end of Moore’s law, the feasibility of 
creating an alternative architecture that is brain-inspired was put in question [24]. 
This resulted in a pursuit that caused important discoveries in the fields of AI, Machine 
Learning (ML), Artificial Neural Networks (ANNs), especially in DNNs, due to their high 
number of hidden layers of neurons that have the ability to train themselves without 
the need to be specifically programmed. How DL relates to AI can be seen in Fig.2.1. 
 

 
Fig. 2.1. DL in the context of AI. 

 
The methods used in training these ML type of algorithms are divided into 

supervised (classes are known before training) and unsupervised learning (the 
computer itself must determine the classes). DL is currently considered to be state-
of-the-art virtually in all AI-related applications, mostly because it speeds the 
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incremental advances in a field, e.g. advances that used to take years to achieve, are 
now happening much faster [25]. Neural networks are formed of a group of neurons 
and connections that are organized in layers in order to solve ML tasks. In order to 
produce an output, a neuron receives many inputs from predecessor neurons that are 
summed up by their weights followed by an activation function which is usually 
nonlinear, e.g. the Rectified Linear Unit (ReLU) [26]. Weights are very crucial for ANNs 
because this is how neural networks learn and depending on their values, the 
activation function will pass or not the signal to the neuron’s output. This adjustment 
of weights during the learning process is what we call training. The neurons that have 
no predecessor are known as input neurons and the neurons that have no successor 
are known as output neurons. In between the input and output neurons, hidden layers 
of neurons are to be found that are connected to each other by their connections, also 
called synapses. It is not a rule, but it is considered that when the number of hidden 
layers is more than eight, it is called a DNN. 

DNNs can have not only a few but also hundreds of layers [27] and in order 
to train them, a common technique known as Gradient Descent, e.g. Stochastic 
Gradient Descent (SGD) [28] is used. Gradient Descent is an optimization method 
based on a back-propagation algorithm that calculates the loss function’s gradient. A 
very important step in calculating the gradient is to first calculate the activation of 
each layer during the inference, as can be seen in Fig.2.2. 
 

 
Fig. 2.2. Example of how an ANN learns by minimizing the cost function. 

 
During inference, the value can be either continuous, e.g. regression 

problems, or it can be discrete, e.g. in classification problems. This feed-forward, 
back-propagation, and update of the weights using the gradient descent constitutes 
one training iteration. During the training of a DNN, hundreds of iterations are needed, 
e.g. ResNet-50 [27] takes more than 450 thousand iterations on ImageNet [29], the 
dataset used by many researchers in the ILSVR (ImageNet Large Scale Visual 
Recognition) challenge [30]. 

DNNs are significantly improving many AI applications including computer 
vision [31], speech recognition [32], gaming [33, 34], self-driving cars [2], cancer 
detection [3], arrhythmia detection [4], and robotics [5], to name only a few, resulting 
in a rapid improvement of performance regarding the accuracy also on ImageNet 
challenge [30]. An example of how powerful DNNs are, is the success of AlphaGo, the 
first program to achieve better performance than human players in the ancient game 
of Go [33] which was, shortly after, surpassed by AlphaGo Zero [34]. While the 
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accuracy surpassed the human’s one, the high power consumption and cost behind 
these computations have a negative impact on the environment. This brings the 
urgent need for research that focuses on how to not only minimize the carbon footprint 
and energy needs of DL systems but also on how to correctly evaluate DL models and 
systems using environmentally-friendly metrics. 
 
 

2.1.1. Deep Neural Network Architectures 
 

This section presents an overview of different types of neural network 
architectures that we extensively experimented within our research presented in this 
Ph.D. thesis. 

A widely used neural network architecture, especially in Computer Vision, is 
a Convolutional Neural Network (CNN), mainly because of its ability to efficiently 
extract features from images and classify them. CNNs are typically consisting of 2D 
convolutional (CONV) layers, pooling layers, and classifier layers which take the 
flattened output of the previous layers as input. The CONV layer creates a specified 
number of feature maps with the help of feature detectors and applies an activation 
function in order to increase the non-linearity. By doing this, the CNNs are able to 
learn the internal feature representations and preserve the spatial relationship 
between pixels. The purpose of the CONV and the pooling layers is to assure spatial 
invariance (map retention characteristics needed for classification via translation and 
rotational invariants) [35] and to significantly reduce the size of the images (by 
reducing the resolution of the feature maps). Pooling also gets rid of the features that 
are not important (features we are not looking for), resulting in a reduced computation 
cost. The neural network will then combine the features extracted by the CONV layers 
into more attributes that can predict the classes even better. This is done using a 
Dense layer that contains neurons that are connected to all the neurons in the prior 
layer. Additionally, because during the training of CNNs neurons develop co-
dependency amongst each other, it can result in decreased detection power of each 
neuron and can lead to overfitting. In order to prevent overfitting and regularize a 
neural network, a technique called Dropout [36] is used on fully-connected (FC) 
layers. The Dropout layer deactivates (zeros out) certain amount (e.g. 50%) of 
neurons randomly at each update during training time and forces the neural network 
to learn features in a robust manner. This is needed especially when the neural 
network is big in size, is training for too long, or if there is insufficient data. Another 
method to regularize and prevent overfitting of a neural network is called Batch 
Normalization (BN) [37]. The BN layer is inserted between successive CONV layers 
and gives resistance to the vanishing gradient problem by reducing the training time. 

In 2014, an architecture called VGGNet [38] was presented by researchers 
from Visual Geometry Group (VGG) at Oxford and which can be seen in Fig.2.3. The 
most common versions of VGG are the ones with 16 (VGG-16) and 19 (VGG-19) 
layers. In our research, we experimented mostly with the VGG-19 version which has 
138 million parameters across 16 CONV and 3 FC layers. The VGG-19 uses 3×3 filters 
with stride and padding of 1 along with 2×2 max-pooling layers with a stride of 2, 
being one of the most influential CNN architectures which proved that deeper layers 
can help the model learn richer feature representations. The pre-trained model of the 
VGG-19 is commonly used in segmentation tasks, detection, and classification of 
images. 
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Fig. 2.3. Summarized view of a VGG-16 Architecture [25]. 

 
In the same year, 2014, a new architecture that is parameter-efficient came 

out, called GoogleNet or InceptionV1 [39] which can be seen in Fig.2.4. Similar to the 
VGGNet, despite there being many versions of Inception architectures, the most 
common is the InceptionV3 architecture which was proposed a year after, in 2015 
[40] and which is also the version with which we experimented in our research. 

The InceptionV3 architecture increased the accuracy and reduced the 
computational complexity of the initial version by using factorization, e.g. reducing 
the size of CONV parameters by replacing one 5×5 CONV by two 3×3 CONV. 

In 2015, a new architecture called Residual Network (ResNet) [27] is 
introduced. The ResNet architecture was the winner of ILSVRC 2015 in image 
classification, detection, and localization, as well as the winner of MS COCO 2015 [41] 
detection, and segmentation and can be seen in Fig.2.5. ResNet is known as the first 
architecture that allowed the accuracy to stay stable or increase even when having 
deeper layers thanks to the new concept of residual learning. The ResNet architecture 
has a fundamental building block (Identity) where a previous layer is merged into a 
future layer (additive), forcing the network to learn residuals by using a skip 
connection (by fitting the input from a previous layer to the next layer without any 
modification of the input). A popular version of ResNet is called ResNet-50, having 50 
layers and consisting of more than 25 million parameters, balancing computational 
complexity together with prediction accuracy, this being also one of the main reasons 
why we used it in our research as well. 

In 2017, a new mobile-friendly architecture is introduced by Google called 
MobileNetV1 [42] which introduces the „Depthwise Separable CONV” block (composed 
of a 3×3 Depthwise CONV layer that filters the input, followed by a 1×1 pointwise 
CONV layer that combines these filtered values to create new features by keeping the 
same number of channels or doubling them) to reduce the complexity (fewer 
multiplications and additions) and model size (fewer number of parameters). 
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Fig. 2.4. Summarized view of a GoogleNet (Inception) Architecture [39]. 
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Fig. 2.5. Summarized view of a 34-layer ResNet architecture with Skip / Shortcut Connection 
(Right) compared to a 34-layer Plain Network (Middle) and a 19-layer VGG-19 architecture 

(Left) [27]. 
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After a year, in 2018, an updated version of the MobileNet architecture is 

introduced called MobileNetV2 [43] which adds an extra 1×1 pointwise CONV layer 
also called „Projection layer” that makes the number of channels smaller, thus making 
this version of the architecture much smaller in size and faster than the previous one. 
An example of a MobileNetV1 and MobileNetV2 building block can be seen in Fig.2.6. 

MobileNetV2 uses a module with inverted residual structure (instead of 
narrow/bottleneck layers in between wide layers of a CONV block, MobileNetV2 has 
wide layers in between narrow/bottleneck layers in a CONV block, resulting in fewer 
parameters), an expansion factor “t” (e.g. if the input has 32 channels, and the 
expansion factor t is 6, then the internal output will be 32×t=32×6=192 channels), 
2 types of blocks (one with a stride of 1 and another one with a stride of 2 for 
downsizing), each MobileNetV2 block having 3 layers. More exactly, the first layer is 
a 1×1 pointwise CONV (combination step) with RELU6 as the activation function, the 
second layer is the depthwise (filtering step) 3×3 CONV, and the third layer is also a 
1×1 pointwise CONV (combination step), but in this case, without any non-linear 
function. Due to the depthwise separable CONV, which is the combination of 
depthwise CONV and pointwise CONV, the computation time and the number of 
parameters are greatly reduced. 
 

 
Fig. 2.6. MobileNetV1 and MobileNetV2 CONV Blocks Comparison. 

 
In our research, we make use of MobileNetV2 architecture. 

 
 

2.1.2. Analysis of Datasets for Different Applications 
 

As mentioned earlier, the huge amount of data available today, gave 
researchers the possibility to train DNNs in such a way that the accuracy surpasses 
the human level in many tasks. In our research, we use different datasets for a variety 
of DL applications. Most of the datasets we use are custom datasets, mostly consisting 
of private images as well as images scrapped from the internet for educational 
purposes. For this reason, we will introduce these datasets later when we will describe 
each implemented DL application. However, we make use also of free publicly 
available datasets such as MNIST [44] and ImageNet [29]. 

MNIST [44] is one of the most popular datasets and it consists of 70.000 
images representing handwritten digits, 60.000 of them are found in the training set, 
and 10.000 images in the test set, organized in 10 classes, representing the 10 digits 
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(0-9). The size of the images is 28×28 pixels, each image being converted to 
greyscale. This dataset is very good for training a model in only a few minutes, with 
minimum effort in data preprocessing, the entire dataset having a total size of around 
50MB. 

ImageNet [29] is a large-scale dataset used in the ILSVRC challenge until 
2017. It consists of 1.2 million images in the training set and 50.000 images in the 
test set. It is a very popular dataset which helped researchers increase the accuracy 
of their models in classifying objects from around 72% up to 97.3% in just seven 
years during the ILSVRC challenge, proving that human abilities can be surpassed 
with the help of DL algorithms that can take better decisions when having access to 
bigger amounts of data. The size of the ImageNet dataset is around 150GB. 
 
 

2.1.3. Deep Learning Frameworks 
 

Through a high-level programming interface, DL frameworks are useful when 
training and validating DNNs. They help us build algorithms of considerable complexity 
by abstracting the computation into simple mathematical operations, mostly found in 
algebra, like matrix multiplications, CONV operations, etc., and which are optimized 
for the hardware they run on. DL frameworks provide programmers the ability to write 
just a description of the computation, without the need to program a multi-core CPU 
or GPU directly. For training and running inference, in our research, we made use of 
two very popular frameworks called Tensorflow [45] and Keras [46]. 

Tensorflow [45] is a library based on Python programming language which 
can run on multiple processors like CPUs and GPUs and has support for other 
programming languages like C/C++, Java, Go, and R. 

Keras [46] is wrapped around Tensorflow and is a high-level API programmed 
in Python. Because of its simplicity and popularity, Keras is since 2017 included in the 
Tensorflow framework. 
 
 

2.2. Green Energy 
 

Due to the continuous growth of the human population as well as the energy 
consumption, mainly in the industrial sector, the demand for more energy is expected 
to increase by up to 28% in the next decades [47]. Even though the current energy 
model was satisfying the demand for energy for many decades by making use of fossil 
or nuclear sources, their negative impact on the environment has resulted in many 
decisions to replace them with renewable energy sources in order to achieve 
sustainability and reliability [48]. 

Recent efforts made to move towards 100% clean and renewable energy 
infrastructure by 2050 [49] are clearly showing the growing interest towards clean 
and unlimited energy sources. Despite many types of renewable energy sources such 
as solar, wind, water, biomass, geothermal, some of these sources are not considered 
„green”, as summarized in Fig.2.7, e.g. large hydropower can have a negative impact 
on land use and fisheries. 

Green energy is considered to be the most environmentally-friendly type of 
renewable energy because it is sustainable and clean (doesn’t release greenhouse 
gases such as CO2, being able to mitigate the problem of climate change [10, 50]). 
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2.2.1. Solar Energy 
 

For millions of years, the sun radiates enormous amounts of energy towards 
our planet. More exactly, the energy flow on the earth’s surface is composed of more 
than 99.9% solar radiation that comes from the sun, making solar energy the most 
important source of energy our planet has. However, despite being the main life 
source for life on this planet, when indirectly used, solar energy can also have a 
negative impact on our life, e.g. because solar energy was stored for millions of years 
in the form of chemical energy, we developed mechanisms to extract and make use 
of fossil fuels such as oil, gas, and coal, but with huge health and environmental cost 
as a result [9, 10]. 

Solar energy, besides being abundant, inexhaustible, readily available, and 
free of CO2 emissions, it is also the only source of energy that can be transformed 
directly into electricity. For achieving this direct transformation into electricity, a 
phenomenon which is also known as the photovoltaic (PV) effect, usually solar cells 
made out of silicon, is used. 
 

 
Fig. 2.7. Green power based on its relative environmental benefits [51]. 

 
 

2.2.2. Dual-Axis Solar Tracking Devices 
 

Because of Sun's availability and its unlimited quantities of clean energy, 
recently, there is a growing interest in academia and in the industry of developing 
efficient solar energy collectors. With regard to modern approaches in how energy 
output can be improved, two major paths can be listed: a) the Maximum Power Point 
Tracking (MPPT) method and b) active solar panel tracking solutions (or in other cases 
a mixture between both these techniques). As far as the second method is concerned, 
solar panel tracking solutions are more advanced technology for mounting PV panels 
and appear under two models: single-axis and dual-axis solar tracking devices. 

While single-axis solar trackers follow the Sun’s position only in the East-West 
direction [52], its peer, the dual-axis model can also cover the North-South direction, 
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hence presenting a much better option, especially for sunny and cloudy days [53]. An 
actual overview of solar energy technology [54] validates a 50% energy increase for 
sun-tracking designs compared to fixed-tilted PV panels over the year. Nevertheless, 
solar tracking techniques are efficient and reliable methods that embrace a variety of 
applications in domains of interest such as railway transportation, AI [55, 16], and 
the Internet of Things (IoT) [56]. 
 
 

2.3. About Hardware and Software Testing 
 

This section presents an overview over some of the on-line (concurrent) as 
well as off-line (non-concurrent) testing methods existent in the literature and which 
are also used in our research, either when testing our solar tracking equipment [17] 
at the hardware [19] and software [18] level or when developing the FPICT device 
[22]. 

The non-concurrent nature of off-line testing significantly minimizes the use 
of hardware overhead and can be designed to cover almost if not all of the Circuit 
Under Test (CUT) area as possible [57]. This is because, in order for the off-line test 
mechanism to allow a test process to be executed, the entire digital system or at least 
a part of it, is required to be inoperative/inactive as compared to the online-testing 
method where the system is required to be in its normal operation mode. 

Off-Line Testing, because of their non-concurrent nature, is able to detect 
defects at a larger set of locations and require that the inputs as well as the state of 
the system are controllable. The purpose of typical testing processes is to construct 
test vector sets that are relevant for a given fault model or a set of them, in order to 
maximize the coverage while minimizing the test application execution time. Because 
the off-line test is usually applied after the circuit is manufactured as part of a more 
thorough manufacturing test, it is also used in maintenance tests on a regular basis 
during the lifetime of the system. 

As compared to Off-Line Testing, On-Line Testing also referred to as 
concurrent checking or concurrent error detection is a test technique used in 
permanent validation of a CUT’s integrity. An example of the on-line testing 
mechanism used in our research can be seen in Fig.2.8. 
 

 
Fig. 2.8. Example of an On-Line Testing mechanism that is used in our research. 

 
A consistent on-line test discipline is very important, especially in assuring 

the reliability in critical systems such as medical devices, satellites, 
telecommunications, solar tracking devices, railway control, and automotive systems, 
to name only a few. The behavior of a circuit can affect the entire system it is part of 
in many ways, thus the main task of an on-line test is to detect any modifications as 
soon as they occur, ideally in a matter of seconds. The modifications in a CUT’s 
behavior can be affected either by a permanent fault or an intermittent fault. Because 
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of the limited manifestation duration as well as the unpredictability of their 
occurrence, the intermittent faults are creating a much more critical situation in 
maintaining the dependability of a system as compared to the permanent faults, 
mostly because their effect does not remain permanent. Off-Line testing, for example, 
will not be able to detect a transient fault the moment it happened (e.g. its effect 
disappeared) but can successfully identify the permanent faults, mostly because their 
effect remains constant for a large period of time. 

The intermittent faults can affect the correct behavior of a circuit during its 
normal operation, resulting in a system failure. The effect of intermittent faults is 
often described as gate-level or transistor-level fault models. In order to make sure 
that the on-line testing technique used is correctly functioning, the integrity of the 
circuit is evaluated by inspecting all the inputs and outputs of the CUT and signaling 
them through an error indicator message or line to the user of the system or to the 
control unit. 
 
 

2.3.1. Linear Feedback Shift Register 
 

In this section, we will discuss the linear pseudo-random generator called 
after the young French mathematician Evariste Galois. 

In the vast domain of digital electronics, a Linear Feedback Shift Register 
(LFSR) defines itself as a chain of D Flip-Flops where the output of the last storage 
element is connected to the input of the first storage element, thus forming an endless 
cycle that provides a fixed number of test patterns [58]. Therefore, LFSRs represent 
typical mechanisms for generating test vectors in Built-In Self-Test (BIST) 
architectures. They are constructed as shift registers with feedback connection, 
operated by EXOR gates. In computing, we can distinguish two types of LFSR 
architectures: Fibonacci and Galois representation. An example of a common form of 
Galois LFSR can be seen in Fig.2.9, which describes a typical LFSR structure that is 
generated by the primitive and irreducible polynomial function x4+x+1. 
 

 
Fig. 2.9. The architecture of a Rank-4 Galois LFSR. 

 
When initialized with a non-zero vector, an LFSR generates at its output, a 

pseudo-random, periodic sequence. 
 
 

2.3.2. Signature Registers 
 



THEORETICAL BACKGROUND 35

Similar to an LFSR implementation, a Single Input Signature Register (SISR) 
contains also a fixed number of D Flip-Flops, each of them having a clock, a reset, 
and a set input, connected in the same manner as the Rank-4 Galois LFSR register 
presented earlier in Fig.2.9. However, the SISR contains an additional EXOR gate at 
the input of the first D Flip-Flop, which is denoted with A. Additionally, the set line 
will load the SISR with an initial vector B = [0 0 0 0] while the reset line is always 
connected to a high logic level (1’d1), as can be seen in Fig.2.10. 
 
 

2.3.3. Built-In Self-Test 
 

Integrated circuits (ICs) nowadays are built around an internal logic that takes 
a set of inputs, applies successive operations on them, and generates the expected 
outputs. In unfortunate cases, these complex circuits can be affected by errors 
derived from manufacturing processes. 
 

 
Fig. 2.10. SISR flip-flop design. 

 
Errors are defined with respect to a system’s service or in other words its 

intended functionality. The system’s service is represented by a chain of external 
states and, in this context, an error occurs when at least one of the system’s external 
states deviates from the intended, correct behavior. 

A BIST error detection method transforms a design into a self-testable 
architecture, capable of detecting the presence of errors in an autonomous manner. 
According to Fig.2.11, the Test Pattern Generator (TPG) provides test vectors to be 
delivered to Logic Circuit inputs. Here a multiplexer is capable by means of a selection 
line to choose between the standard data inputs and the delivered generated test 
vectors. The injected test vectors will find their path through the internal logic of the 
circuit and eventually will be delivered at the Outputs. 
 

 
Fig. 2.11. Example of a Built-In Self-Test (BIST). 
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The Results Gatherer or sometimes called Output Response Analyzer (ORA) 
will perform data compaction (with loss of information) by processing all CUTs 
responses while exercised with the test vectors generated by the TPG. At the final 
stage of the compaction process, the ORA device will provide a signature. The 
signature is a reduced, fixed-size vector, characterizing the entire set of results. The 
signature for a CUT is associated equally to a TPG unit as well as an ORA device, 
generating CUT’s input vectors. The gold signature refers to the signature obtained 
for the correct, fault-free circuit and is usually procured through simulation. The 
presence of errors in a CUT can be detected by comparing the obtained signature with 
the gold signature. This is managed by the output multiplexer that is mounted at the 
end of the BIST architecture. The Results Gatherer can be replaced by a SISR design 
or a Multiple Input Signature Register (MISR) structure which will be detailed in the 
next subchapters of this Ph.D. Thesis. 
 
 

2.3.4. In-Circuit Testing 
 

In-Circuit testing refers to the domain where ICs are verified for their 
functionality by using dedicated test equipment such as a bed of nails and flying probe 
devices, to name only a few. 

Due to the cost of the Automated Test Equipment (ATE) necessary for at-
speed functional tests, the test development time and effect, no possible options for 
upgrading to a BIST solution, and the lack of fast/accurate fault diagnostics 
determined companies to drive away from functional testing and make use of Scan-
based test strategies which, on the other hand, offer better alternative methods for 
testing inputs/outputs, more practical ways to detect delay defects, higher coverage 
for all circuit types and reduced testing time for embedded analog cores and 
Application Specific Integrated Circuits (ASICS) [59]. 

On the other hand, Design for Testing (DFT) procedures are intended to 
introduce engineers to the challenge of making ICs more testable. Integrated filters, 
Analog to Digital Converters (ADCs), and Digital to Analog Converters (DACs) will be 
also taken into account as they are today the main analog and mixed-signal cores 
found in Systems-on-Chip (SoC) devices. In particular, the possibilities offered by 
techniques using small circuit modifications will be specifically focused as the means 
to improve the testability of circuits and thus the coverage of faults, while at the most 
avoiding the degradation of the final electronic system's performance [60]. 
 
 

2.3.5. White-Box Testing 
 

When it comes to software testing, one of the primary objectives is often 
security. White-Box testing [61] is summarized in Fig.2.12 and is a software test 
method in which the tester is familiar with the internal structure, design, and 
implementation of the test item or Device Under Test (DUT). 

The name White-Box testing derives from the fact that the tester is able to 
„see” inside the white/transparent box which is the software program. Here, the tester 
selects inputs through the code to exercise paths and to determine appropriate 
outputs which can result in improved design, usability, and security. 
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Fig. 2.12. White-Box Testing General Diagram. 

 
 Some of the advantages of the White-Box testing method are that the testing 
can be done at the earlier stage, without the need of a Graphical User Interface (GUI) 
and also that this testing method is more comprehensive. Some disadvantages are 
that, in order for the analysis of the internal structure of the system or component to 
be tested successfully, the White-Box testing method requires that the tester has 
advanced knowledge of programming and implementation. This is essential, especially 
in case of an update to the existent code for which the White-Box testing script was 
written, where the maintenance of such a script that should be able to find security 
issues can be very difficult. 

Also, it is important to mention that a White-Box testing method is closely 
tied to the Application Under Test (AUT), thus it cannot be re-used to every kind of 
implementation or platform out there. The White-Box testing method is mainly applied 
for testing paths within a unit (Unit Testing), but can also be applied for testing paths 
between units (Integration Testing) and subsystems (System Testing). Unit Testing 
is often the first type of testing performed on an application because it helps to identify 
most bugs early in the lifecycle of software development, making them cheaper and 
easier to fix. 

In our research, we implemented Unit Testing techniques and successfully 
investigated Communication, Control Flow, and Error handling faults by using a White-
Box testing strategy applied on a solar tracking device [18].  
 
 

2.4. Hash Functions 
 

Hash functions represent an important instrument in the secure computing 
paradigm operating at the core of many of today’s most popular cryptographic 
protocols and services such as Public Key Infrastructure (PKI), TLS, and IPSec. Other 
applications relying on cryptographic hash functions are authenticated access to 
Virtual Private Networks, file integrity verification, and electronic voting systems [62]. 
A hash function maps a message of arbitrary length to a binary sequence of a fixed 
length, known as the hash value or message digest, being used to secure the integrity 
of the original message [63]. The security of hash functions relies on their collision 
resistance, meaning that given a message, it must be computationally infeasible [57] 
to find a different one generating the same hash value. 



Related Work 38

In our research, we implemented several techniques for improving the 
throughput and performance of an SHA-256 hardware implementation with the aim 
to use them for future research regarding the implementation of a more secure 
medical DL-based system that stores confidential and sensitive data regarding 
patients health status and is used for training or inference of DL models with the scope 
of predicting possible diseases such as pneumonia [64] and COVID-19 [65]. 
 
 

2.4.1. SHA-256 Algorithm 
 

The SHA-256 is formally presented in [66] and operates with words on 32 
bits. The hash value or message digest of a message is a 256-bit vector. Message 
processing by SHA-256 involves three stages: padding and parsing, message 
schedule, and hash computation or data compression. The padded message is parsed 
in blocks of 512 bits, each block being processed individually in order to obtain the 

final hash. The hash value is a vector of 8 words, defined as , with j being the 
index of the hash word, 0≤j<8, and i being a counter for the currently processing 

512-bit block. The initial values of the hash words, , are given in [66].  
The message schedule expands the 16 words of the 512-bit block into 64 

words, denoted from  to . The first 16 words of the message scheduler are the 
very input words forming the 512-bit block. The remaining 48 words are generated 

by the message scheduler by using two dedicated functions,  and , and a 
binary adder modulo 232. The data compression phase makes use of 8 working 
variables, a to h, initialized with the current hash value at the beginning of each 512-
bit block processing. This stage involves 64 iterations, each one updating the 8 
working variables and using one of the 64 words generated by the message schedule.  

The working variables’ processing makes use of 4 functions, , , Ch, 
and Maj. The variables’ processing utilizes a lookup table for storing 64 word constants 
and generates the result using a modulo 232 adder [66]. Finally, after the 64-th 

iteration, the hash values, , are updated by adding to each of them the content 
of the corresponding working variables. After processing the last 512-bit block, the 8 
hash words are delivered at the output as the message’s digest. 
 
 

2.5. Related Work 
 

In this section, we will present the previous works related to our research. We 
examine previous attempts related to our DL applications, position optimizations of 
dual-axis solar trackers, hardware and software testing as well as the deployment of 
DL models on low-cost embedded platforms such as the Nvidia Jetson TX2. Then, we 
will continue with works related to the evaluation of DL models and systems as well 
as to the data collection, cleaning, and labeling. Finally, we will review the previous 
works related to FPT testing as well as the ones related to hardware implementations 
of SHA-256 algorithms. 
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2.5.1. Different Deep Learning Applications for Detecting 
Fraud and Increasing Security 
 

Even though there are some efforts in the direction of making the shopping 
experience better using mobile applications, they are lacking the ability to check for 
equivalence between prices at the shelf and in the computer system database. An 
example is the Carrefour Pay application [67], which gives customers the option to 
scan the barcodes of products they intend to buy, find out their price, and 
automatically create a shopping list. However, this application lacks the ability to run 
fully on-device and is cloud-dependent. The work in [68] proposed an Android mobile 
application that creates an expense list based on the receipt photos taken by the 
smartphone camera with the help of the Tesseract OCR engine [69]. Their application 
performs poorly on images that contain noise, a problem which Tesseract and other 
OCR libraries are known to have [70]. A CNN based solution for the problem related 
to wrong labeling of use by date in retail food packages is presented in [71] where 
the authors make use of transfer learning and Maximally Stable Extremal Regions 
(MSER) algorithm in order to recognize the date within the region of interest (ROI). 
Their architecture has more than 42 layers, resulting in higher computational time 
and bigger complexity, which is not justifiable, especially when deploying them on 
mobile applications [72]. Also, regarding digit recognition, by making use of 2 CNNs 
and a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM), the 
work in [73] tackles the problem of detecting and recognizing car license plates from 
natural scene images but is not efficient for running in real-time. Also regarding 
license plate detection, this time in real-time and using OpenCV and Tesseract, the 
authors in [74] proposed an OCR algorithm that extracts characters from an image 
belonging to a license plate. Similarly, another work using Tesseract for recognizing 
digits is also presented in [75], where the authors created a Thai lottery number 
reader Android application for blind people, having a processing time of 4 seconds 
and a distance between the camera and the object of 8 inches. 

In [76], a CNN for Fashion Classification and Object Detection was 
implemented by using a standard AlexNet architecture that was pre-trained using 
ImageNet for clothing type classification. In [77] a CNN model for clothes classification 
is presented, where, in order to evaluate the performance of their model, the authors 
adopted the classification accuracy as the measure criteria. In [78], a fast and 
accurate fashion item detection model is proposed by modifying and combining 
MultiBox and Fast R-CNN detection architectures. In [79], a method for identification 
of an outfit in an image followed by a classification using CNNs is presented. The 
authors use the weights from the InceptionV3 GoogLeNet architecture which was 
trained on the ImageNet dataset. In [80], a CNN approach to the classification of the 
texture of the clothing is presented, where the authors show that CNNs outperform 
seven well known hand-engineered feature extraction methods. In [81], a CNN 
application for scale analysis of clothes, styles, and fashion was developed by the 
authors for million images taken by people from all around the world spanning a 
couple of years. 

Despite elaborate research and intensive work towards constructing 
automated animal recognition systems, only a few approaches resulted in usable 
tools. Some examples of available applications are iNaturalist [82], a popular app for 
the automated identification of animals and plants at the species level as well as Merlin 
Bird ID [83], an app that is aiming to identify 650 most common bird species in North 
America based on their images. The authors in [84] present an animal recognition 
and identification system for automated wildlife monitoring by using CNNs to identify 
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the most common animal classes from images taken by trap cameras in Australia. 
Their model is trained from scratch as well as by using fine-tuning (having pre-trained 
weights from the ImageNet dataset) and shows that the deepest model, the ResNet 
architecture with 50 layers, also called ResNet-50, achieves the best performance. 
The work in [85] presents an animal recognition system based on Support Vector 
Machines (SVM) and a proposed CNN for animal classification. Their results show that 
the CNN model outperforms other classical ML methods when it comes to animal face 
recognition. A drawback of their model is that it can classify images of animals only 
by their faces and not also their entire body. The work in [86] presents a CNN and 
multiclass-SVM based method for animal classification from images using the AlexNet 
architecture. Similarly, the authors in [87] use a pre-trained CNN model on the 
AlexNet architecture that is combined with a multi-class SVM classifier in order to 
classify 20 animal classes from video frames, achieving 83.33% accuracy. Another 
works towards improving the classification work of ecologists are presented in [88], 
where the authors propose a VGG-16 CNN model that can classify 20 African wildlife 
species with 87.5% accuracy from images, as well as in [89], where the authors 
present a CNN model on a ResNet-18 architecture for the classification of wildlife 
animal species found on camera trap pictures obtained from U.S., Canada, and 
Tanzania. 

We distinguish ourselves from the above mentioned related works by 
proposing an application that targets the detection of fraud regarding product and 
receipt prices in a Supermarket, an application that identifies the Romanian traditional 
motifs as well as an application that identifies the most common animals found in 
domestic areas of Europe in real-time. 
 
 

2.5.2. Position Optimization and Testing of Dual-Axis Solar 
Trackers  
 

Variable weather conditions are a challenge even for professional solar 
trackers. The work in [90] is bisecting this problem in two stages of direct and indirect 
sensing of the Sun. By using an Arduino UNO board, DC motors with gearbox, LDR 
sensor modules, angle sensors, timing circuit, Bluetooth module for wireless 
operation, and a motor driver circuit, the authors obtain an overall power increase of 
10 to 40% compared to a fixed-tilted solar panel, regardless of atmospheric 
conditions. A similar configuration found in [91] which includes an Arduino328, four 
LDRs, and two servomotors, focuses on voltage measurement comparison, showing 
an average rise of 37% for a dual-axis solar tracker over a static solar panel. A 
multipurpose dual-axis solar tracker with two tracking strategies (normal and daily 
adjustment strategies) is implemented in [92], which can be applied to flat PV panels 
as well as Concentrating Solar Power (CSP) systems. The authors in [93] propose an 
autonomous solar tracker oriented with the support of light sensors and compare the 
experimental results of a dual-axis, single-axis, and fixed panel. According to their 
chart, the two-axis model is considerably more efficient in generating an average of 
77.58% Watt, followed by the single-axis with 61.75% Watt when compared to the 
static PV panel on the course of one day cycle. In terms of originality, two works are 
worthy of mentioning in this section. First is a novel design of a bi-level automatic 
solar tracker described in [94] where the authors investigate the possibility of rotating 
the payloads around orthogonal axes and accomplish a unique structural design 
formed of four PV panels that allow tilting with only five servo-motors rather than 
eight used in regular four dual-axis trackers. Their proposed method tops static PV 
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panels and proves to be efficient compared to some modern dual-axis solar trackers 
from other works. Secondly, the work in [95] comes with a genuine idea of 
implementing an online sensorless dual-axis sun tracker based on the MPPT method. 
Apart from traditional sensorless solar trackers which operate in the open-loop 
regime, the proposed system works as a closed-loop device which cumulates the 
advantages of both sensor-based and sensorless dual-axis sun trackers but lacks all 
of their disadvantages. 

Current advances in fault diagnosis and detection regarding solar harvesting 
systems can be sustained by applications such as ANNs, Line-to-Line (L-L) fault 
detection, online fault detection and diagnosis, simultaneous fault detection 
algorithm, and simulation of microgrid systems with distributed generation. The work 
in [96] proposes an ANN-based model for fault identification and classification towards 
PV systems. The simulation results show that the method is efficient in detecting and 
classifying five different types of faults in PV systems. As the number of PV panels 
increases, L-L faults may remain undetected causing loss of energy and potential fire 
outbreaks. The authors in [97] resort to a fault detection algorithm based on multi-
resolution signal decomposition (MSD) for feature extraction and ML techniques for 
decision making, demonstrating the accuracy of the adopted approach. Another 
method of detecting faults is linked to an online fault detection based on wavelet 
packets [98]. A concurrent fault detection algorithm is proposed in [99] that can 
successfully identify faults such as faulty PV modules, faulty PV String, faulty Bypass 
diode, and faulty MPPT unit. A certain number of PV panels can be combined together, 
resulting in a Grid-Connected PV (GCPV) plant. The simulation experiments of the 
authors in [100] show that they are capable of switching between grid-connected and 
isolated modes of operation, resulting in the detection of errors that can occur in 
system behavior. 

The interest shown in the literature for testing solar trackers at the hardware 
level is lower compared to the software level. However, BIST routines are part of the 
industrial practices as well as an important research interest, especially in the last 10 
years, where researchers have developed an interest in proving their efficiency in 
embedded memory testing [101]. In order to gain more flexibility with the memory 
testing techniques, a generic BIST methodology has been created around a set of 
March algorithm registers that can quickly adapt to the CUT and its corresponding 
memory types. With the help of Modelsim simulations, the authors achieved a proper 
validation, showing high coverage performance for common faults. More recent 
advances in the testing domain are highlighting the requirements for an efficient test 
pattern generation, configuration, oscillation techniques, and multilayer features of 
BIST systems. P. Moorthy et al. present a novel TPG for the BIST without extending 
the length of test sequences [102]. Their proposed method is described as a 
generation of multiple patterns with single input change (SIC) that reduces the 
number of transitions during scan shift operations and decreases the switch-mode 
activity in the DUT. By using an LFSR as a test generator in combination with a MISR 
as a test compactor to verify a complex Wallace tree circuit, the authors demonstrate 
that a multiple pattern single input change (MSIC) method saves test power by 7% 
and reaches a fault coverage greater than 70%. 

We distinguish ourselves from the aforementioned related works by firstly 
focusing on the development of a solar tracking device which rotates the PV panel 
according to the Cast-Shadow principle. Secondly, by implementing a White-Box 
strategy oriented toward the detection of common software errors found in modern 
microcontroller units. Finally, by implementing an OBIST solution that is composed of 
a TPG, an ORA, ADCs, and DACs and an idle state detector, all of them connected to 
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several switch-batches for testing a solar tracking device that comprises an 
Optocoupler (LTV-847), an Arduino UNO and two L298N ICs. 
 
 

2.5.3. Deep Learning Inference using Nvidia Jetson TX2 and 
Motion Detection  
 

Similar work that evaluates the power efficiency of DL inference for image 
recognition on embedded GPU systems is presented in [103] where the authors 
compare different platforms like Nvidia Jetson TX1 and TX2 as well as a Tesla P40 and 
show that the Nvidia Jetson TX2 board is able to achieve the highest accuracy with 
the lowest power consumption. The authors in [104] make use of an Nvidia Jetson 
TX2 to test a fully CNN for detecting traffic lights and use a power supply unit (12V) 
with stabilizer in order to increase the stability of the system, mentioning that the 
Nvidia Jetson TX2 has a low power consumption of around 10W, which is also 
confirmed by our experimental results using different CNN architectures. The work in 
[105] train and test two CNNs for classifying skin cancer images as Benign or 
Malignant on the Nvidia Jetson TX2, proving that this embedded platform is capable 
of handling DL computations even for training CNN models, not only for inference. 
The authors in [106] propose an object detection implementation using MobileNet as 
the backbone network on an Nvidia Jetson TX2 board, showing a higher fps and 
reduced model size when compared to other networks. Nvidia Jetson TX2 is used also 
in [107] where the authors propose a CNN based application that can run onboard a 
satellite in order to detect and classify boats on the open ocean from satellite imagery. 
Experimental results show that the Nvidia Jetson TX2 has almost half the power 
consumption when compared with standard systems designed for a satellite onboard 
processing. The authors in [108] use Nvidia Jetson TX2 for their proposed 
methodology regarding a faster and more accurate object detection in unmanned 
aerial vehicle (UAV) imagery. The work in [109] proposes a vehicle and pedestrian 
detection system that uses CNNs in order to evaluate traffic violations and which is 
implemented on an Nvidia Jetson TX2 board. Other related works that use Nvidia 
Jetson TX2 are regarding real-time ear detection [110], when developing embedded 
online fish detection and tracking system for ocean observatory network [111], real-
time multiple face recognition [112], a streaming cloud platform for real-time video 
processing [113] and detecting diabetic foot ulcer in real-time [114]. A comparison 
between different DNN computing platforms, including Nvidia Jetson TX2, is made 
also by the work in [115]. 

Regarding motion detection, the authors in [116] present a comparative 
analysis of motion-based and feature-based algorithms for object detection and 
tracking and show that the Adaptive Gaussian Mixture Model (AGMM) [117] is faster 
and more robust to illumination (shadows) than Grimson Gaussian Mixture Model 
(GGMM) [118] when performing on real-time videos. Also, the authors in [119] 
present a study on preprocessing methods for tracking objects in soccer videos, 
showing that background subtraction and edge detection are advantageous for 
detecting moving objects. OpenCV is also using AGMM together with other several 
algorithms for background subtraction which are presented in the works of [120] and 
[121] but, in comparison with OpenCV, the algorithms in OpenCV are more modern, 
accurate, and faster (a reason for this is because they are continuously developed by 
the OpenCV community). 

We distinguish ourselves from the above mentioned related works by making 
use of a motion detection method implemented with the help of OpenCV in order to 
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lower the power consumption of an Nvidia Jetson TX2 board that runs inference in 
real-time and which is powered 100% by a dual-axis solar tracking device. 
 
 

2.5.4. Metrics for Evaluating the Performance of Deep Learning 
 

Awareness regarding the importance of energy consumption can be seen not 
only in the field literature [118-126] but also in competitions such as the Low-Power 
Image Recognition Challenge (LPIRC) [127]. The question of energy consumption to 
be used as a metric when evaluating the performance of DL models or DL-based 
systems is of high importance for many papers in the literature. An example is the 
work in [8] where the authors advocate for a simple and compute-efficient metric, 
suggesting the use of energy efficiency as a metric when evaluating a DL model 
instead of “Red AI” which refers to the kind of AI research that uses extreme 
computational power and costs to achieve state-of-the-art results regarding accuracy. 
In order to measure the efficiency, after concluding that “Red AI” is used today by 
almost anyone in the literature, the authors suggest that future researchers should 
report the amount of work required to train a model using the total number of floating-
point operations (FPO). Despite several advantages (e.g. agnostic and tied to the 
energy consumption of a hardware platform that runs a model), FPO has some 
limitations regarding taking into consideration the memory consumption of a model 
as well as its implementation, which, in the case of several implementations of the 
same model, can lead to different amounts of processing work. 

A comprehensive analysis of important metrics such as accuracy, inference 
time, memory footprint, power consumption, parameters, and operations count as 
well as some combination of them for 14 DNN architectures is made in [128] where 
the authors did all their experiments using only the Nvidia Jetson TX1 board and show 
the importance of these metrics when designing efficient DNNs. Regarding power 
consumption, they show that it is mostly independent with the batch size for all neural 
network architectures. Similarly to the results in [128], the authors in [129] expand 
the analysis to over 40 DNN architectures both on the Nvidia Jetson TX1 board as well 
as on an Nvidia Titan X Pascal GPU, highlighting the importance of metrics when 
evaluating the performance of a neural network, but lacking to provide the energy 
consumption of the systems the DNN architectures are running on. Also, the authors 
in [130, 131] contribute to the challenge of estimating the energy consumption in ML 
by providing useful guidelines and a large selection of the latest software tools for an 
ML expert who wants to design and estimate energy for future DL systems. 

Some arguments against using only TTA as a metric when evaluating DL 
systems on the MLPerf Benchmark are presented by the work in [132] where the 
authors propose the Time-To-Multiple-Thresholds (TTMT) curves and Average-Time-
To-Multiple-Thresholds (ATTMT) metric. By comparison, their metric targets the 
training part, without taking into consideration the energy efficiency whereas our 
metrics target both the training and the inference parts and take into consideration 
the energy consumption as well as the energy cost of a DL-based system. Additionally, 
the TTA and ATTMT metrics are able to compare only different systems, whereas our 
metrics are able to compare also different models trained and executed in different 
systems, e.g. to identify on which hardware is better to train a DL model and on which 
hardware is better to run an inference with the same DL model. 
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2.5.5. Data Science-Oriented Computer Vision Application 
 

The authors in [133] propose a solution called ImageX for sorting large 
amounts of unorganized images found in one or multiple folders with the help of a 
dynamic image graph and which successfully groups together these images based on 
their visual similarity. They also created many similar applications, e.g. ImageSorter 
[134], which besides sorting images based on their color similarity, is also able to 
search, download and sort images from the internet with a built-in Google Image 
Search option. A drawback of their applications is that the user is able to only visualize 
similar images, without also having these images automatically cleaned and sorted in 
their respective class folder with high accuracy. Also, the authors in [135] created an 
application called Sharkzor that combines user interaction with DL in order to sort 
large amounts of images that are similar. Their solutions only sort images by grouping 
them based on how similar they are to each other after a human interacted and sorted 
these images initially. An on-device option that uses DL capabilities and helps users 
find similar photos is presented also by Apple in their newest version of the Photos 
app [136]. Regarding the detection of duplicate images, recently, a python package 
that makes use of hashing algorithms and CNNs that finds exact or near-duplicates in 
an image collection called Image Deduplicator (Imagededup) was released in [137]. 
When training DL models, the work in [138] is assessing the feasibility and usefulness 
of automated DL in medical imaging classification, where physicians with no 
programming experience can still complete such tasks successfully. The authors in 
[139] created the Image ATM (Automated Tagging Machine) tool that automatizes 
the pipeline of training an image classification model (preprocessing, training with 
model tweaking, evaluation, and deployment). 

Our Computer Vision application distinguishes itself from the related works by 
offering more functionalities that make use of DL inference and by introducing the 
APC, APEC, TTCAPC, and TTCAPEC metrics calculators, all in a user-friendly GUI. 
 
 

2.5.6. Affordable Flying Probe-Inspired In-Circuit-Tester for 
Printed Circuit Boards 
 

Placement accuracy is one of the primary issues in modern FPT systems. The 
authors in [140] are aware of the fact that the growing complexity of PCBs can 
introduce risks of faults at any stage of the manufacturing process and they propose 
a hybrid approach based on the combination of a traditional FPT and an Automated 
Optical Inspection (AOI) device. The second issue regarding modern FPT systems is 
the probe’s navigation time between test nodes and is generally associated with the 
Traveling Salesman Problem (TSP). The authors in [141] investigate the ordering 
requirements for the complete amount of sample points and consider it an extension 
of the above-mentioned TSP because they use more than one probe in their research. 
Test pad localization is the third issue which is concerned in recent FPT designs and 
can be solved by applying a clustering method which was employed by the authors in 
[142] referring to a two-stage clustering procedure on a 71040-pixel dataset derived 
from a PCB image with a precision ratio of 93.25%, proving that their method is highly 
efficient in identifying test pad locations for electronic boards which lack proper 
documentation. Finally, the test coverage problem is analyzed by Soh Ying Seah et 
al. [143] in their work which targets test load boards that are used as an interface 
between Automatic Test Equipment (ATE) and IC during package level testing using 
a hybrid approach between the ATE and FPT in order to verify four load board 
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categories before and after merging the two methods together. Their experimental 
results showed a substantial test coverage increase (up to 100%) categories of 
electronic load boards. 

Despite the fact that the previous works focus on the feasibility of combining 
FPT with other test methods as well as optimizing traveling paths between test nodes, 
test pad localization, and fault coverage, we are implementing an FPICT that 
integrates the test node localization features of a CMM, resulting in a sensorless 
solution. 
 
 

2.5.7. SHA-256 Hardware Implementation Acceleration 
Techniques 
 

In [62], the authors investigate a number of acceleration techniques that are 
expected to improve the performance of hash functions, in general, and of SHA-1 and 
SHA-256 hash operations, in particular. The proposed techniques are related to loop 
unrolling, spatial precomputation, prefetching of data, design of an iterative 
architecture, and using a CSA structure for reducing the critical path and can be 
applied in any combination in order to attain the targeted performance. 

In [144], authors investigate additional acceleration techniques applicable to 
SHA-256 and, by extension, to other functions from the SHA-2 family. Starting from 
the critical path of the algorithm, the authors first replace all binary adders by CSAs 
and include a final lookahead addition stage for computation of the sum in non-
redundant representation. 

In [145], authors construct hardware architectures for SHA-1 and for SHA-
512 standards for high throughput. The hash acceleration techniques include loop 
unrolling and precomputation for part of the values used for generating the next 
working variables. 

In comparison, we improve the throughput and performance of a standard 
SHA-256 hardware implementation by proposing several acceleration techniques. 
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3. DIFFERENT DEEP LEARNING-BASED 
APPLICATIONS FOR DETECTING FRAUD AND 

INCREASING SECURITY 
 
 

Following, we will present three different DL-based applications that use 
several state-of-the-art CNN architectures with the aim to solve three different 
problems related to fraud and security. 
  

3.1. Mobile Application for Receipt Fraud Detection 
Based on Optical Character Recognition 
 

Despite the fact that we live in an Internet Era where multi-billion companies 
from the e-commerce industry like Amazon and Alibaba achieve record profits year 
after year due to their online sales, many offline grocery stores existed, exist, and will 
continue to exist, recently, the most conventional ones being known under the name 
of a hypermarket/supermarket like Kaufland and Carrefour, to name only a few. A 
very common problem that occurs very often in hypermarkets/supermarkets in many 
countries around the world is that the price of individual products or the total price on 
the receipt that needs to be paid, don’t always reflect the real price seen at the shelf 
and the real number of products in the customer’s shopping cart. This problem exists 
due to a computer or human error and can happen because various reasons: a product 
gets scanned more or less than the number of times it was actually present in the 
customer’s shopping cart, doesn’t get its price scanned correctly, or because its price 
or special offer discount seen at the shelf is wrong, old or was not updated with the 
new price value. In order to solve this problem, our approach in this chapter is to 
provide a DL-based solution in the form of an on-device smartphone application that 
will give a user the options to take photos of the products at the shelf as well as of 
the paid receipt and automatically have their prices compared with the help of an OCR 
algorithm [146] based on image processing techniques and two CNNs. 
 
 

3.1.1. Proposed Receipt Fraud Detection Application 
 

In comparison to a cloud-based solution, the on-device inference not only has 
advantages regarding the price (cloud solutions can be costly) and latency (in case of 
poor internet connection) but also regarding the protection of a user’s privacy [147]. 
Despite their smaller size when compared to a personal computer or a laptop, in 
recent years, smartphones became a platform of choice for DL applications [72], and 
big names in the industry (e.g. Google, Facebook, etc.) released their mobile versions 
of DL frameworks [45], [148] with the goal of running inference on the device (e.g. 
Android) itself. 

When it comes to recognizing digits in natural images (e.g. photos taken in 
the hypermarket/supermarket with our smartphone), there are many problems that 
can occur, as can be seen in Fig.3.1 and Fig.3.2: the lack of contrast between the 
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pixels representing the digit and the pixels representing the background as well as 
the existence of noise like texture and patterns in their regions. 

 

 
Fig. 3.1. Image Processing Techniques applied on the dataset regarding price images from 
Products (Top) and Receipts (Bottom): Images of Product and Receipt after thresholding 

(Left), Manually cropped images of Product and Receipt (Middle), and Contours detected in 
Product and Receipt images (Right). 

 
Another problem can be the size and alignment of the digits, their font style, 

or optical distortions (photos of these digits that represent the price can be situated 
under a plastic cover or having different angles at the shelf). 

Moreover, because of the artificial lighting conditions in a supermarket, there 
can also be other obstructions like shadows or even that the lens of the smartphone 
camera can be defocused. Other problems are related to the design of digit recognition 
systems including the acquisition of images, their pre-processing, segmentation as 
well as representation and classification. The main problem in such a system is the 
segmentation part, which takes a string of digits (number) as input and segments 
(crops) them into individual, single digits because it requires a high number of 
hypotheses when extracting features from the contour of images as well as their 
background or foreground. 
 

 
Fig. 3.2. Example of noise (Top-Left side) found in our dataset. 

 
Regarding the proposed receipt fraud detection application summarized in 

Fig.3.3, there are two main phases considered. Phase 1, where a user takes one photo 
of the product he/she intends to buy (e.g. in order to be able to prove, in case of 
fraud detection, that the product at the shelf did had a wrong price tag), then takes 
a second photo with the price tag and then crops out the single price represented by 
multiple digits separated by a comma, usually found in a single row in a horizontal 
position. Phase 2 represents the step where the user is done with the shopping and 
received the receipt. Here, the user takes only a single picture, in this case, of the 
receipt and crops out all prices (usually found on the right side of the receipt, in 
multiple rows in vertical position). The user will be also able, at any point, to review 
any of the pictures or crops and, if necessary, to edit them. 

The reason behind our design decision regarding the cropping of the exact 
single price (regarding the product) and cropping of multiple digits representing the 
bought product prices (regarding the receipt) is because of the speed and memory 
concerns, which in our case, are minimized as much as possible (an average of 1 
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second per item and 10MB app memory usage). As a result, both CNN models will 
have to process a much smaller size image, representing very exactly the ROI. 
 

 
Fig. 3.3. Summary overview of the proposed application for Receipt Fraud Detection. 

 
In order to successfully identify all the multiple digits, comma, and noises that 

are part of a price, the proposed receipt fraud application is going through 2 main 
phases, each having two main steps: A. Extracting digits from cropped image and B. 
Identifying digits, comma, and noise. 
 
 

3.1.2. Implementation Decisions for Phase 1 (Product Prices) 
 

Following we will describe our implementation decisions regarding the product 
prices. 

Regarding product prices, for extracting digits from cropped images, we 
defined a function that receives an image as input and returns a list of images of 
digits, a comma, or noise. Sometimes dark shadows in an image can make the contour 
finding algorithm detect elements that are neither a digit nor a comma. It is not 
possible to avoid this problem without introducing another DL algorithm; however, 
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since we already have a DL algorithm that will receive the output from the contours 
algorithm, we can add the task to that algorithm in order to identify noise from an 
actual relevant character. For this function, we didn’t try to remove the noise images, 
but instead, we focused on trying to isolate the actual digits, since it is more efficient 
to remove the noise images with the next classifier. 

This function makes also use of some of the functions from the OpenCV library 
and finds the images in four steps: 

 
1. Converts the image to grayscale 
2. Inverts the color of the image. The contour-finding function assumes that 

there are objects in the image with a black background. Since in our data the 
opposite is true, the evident choice is to invert colors 

3. Applies the adaptive threshold with the Gaussian method. This is known as a 
method that works very good regarding contour detection [149] 

4. Finds contours 
 

This manages to extract correctly all the digits in 99% of the cropped images. 
The reason for this is that sometimes a shadow or a dark object may block the image 
or make it have a very dark appearance, resulting in the impossibility of the algorithm 
to find contours since all of the darker pixels are connected. In those cases, the 
algorithm fails. The 1% of the images comprise the ones that contain very dark 
regions of pixels of noise, which causes the function to extract all the images as if it 
were only one digit. 

Regarding product prices, for identifying digits, comma, and noise, the 
objective here is to have a CNN model that can classify each digit, comma, or noise 
with the least amount of processing power used, in order to embed it later in a 
smartphone application (e.g. Android). To do this, we trained the CNN on augmented 
data. 

With regard to data augmentation, we defined a function that applies four 
transformations to an image to create a random augmentation of that image: 

 
 The first transformation rotates the image with an angle between -10° 

and 10° 
 The second transformation adds a shadow to the image by randomly 

choosing a straight line and a side of the line, and darkens the pixels of 
that side of the line 

 The third transformation makes a perspective warp to the image 
 The last transformation adds random padding to each side of the image 

 
Using this method of data augmentation we successfully created 12.000 

images in our product prices dataset, containing 1.000 images of each digit (0-9), 
1.000 images of commas, and 1.000 images of noise. 

For the image preprocessing, since every input for the CNN must have the 
same size, we defined a function that resizes and pads an image in order to fit a target 
size, which in this case we chose 50 width × 100 height, approximately the ratio that 
most digits in our Products dataset have. Before training, for a better convergence of 
the weights, all images were normalized. 

As can be seen on the left side of Fig.3.4, the proposed model architecture 
used for identifying the Product Prices contains four layers: 
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1. Four units of a 2D CONV layer with a kernel size of 10×10, strides of 2×2, and 
ReLU activation function [26] followed by a dropout [36] rate of 0.5. This reduces 
the image from 100×50×1 to 46×21×4 and adds 404 trainable parameters 

2. A max-pooling layer with a pool size of 2×2. This reduces the image to 23×10×4 
3. A dense layer with 12 outputs and a ReLU activation function that adds 11052 

trainable parameters 
4. A dense layer with 12 outputs and a Softmax activation function that adds 156 

trainable parameters 
 

The reason for this network design approach was to obtain a small 
architecture, thus a more portable and faster algorithm. The proposed model was 
obtained by minimizing the number of layers and trainable parameters while 
preserving the model accuracy, in order to have a compact model that can be 
deployed on resource-constrained devices (e.g. smartphones). 
 

 
Fig. 3.4. Proposed CNN Architectures for identifying prices from cropped Product (Left) and 

Receipt (Right) images. 
 

Since the scope of this work aims to classify only one font of characters, the 
reason for this being the lack of access to real-life product photos from supermarkets 
[150], [151], it is possible to obtain close to perfect results with a minimalistic model 
design. We used RMSprop as the optimizer, with a learning rate (LR) of 0.001 and 
categorical cross-entropy as the loss function. 
 
 

3.1.3. Implementation Decisions for Phase 2 (Receipt Prices) 
 

Regarding receipt prices, for extracting digits from cropped images, the 
processing of the receipt images is very similar to the processing of the product prices. 
For extracting the digits from cropped images we used the same function but changed 
the parameters of the adaptive threshold, achieving similar results. 

Regarding receipt prices, for identifying digits, comma, and noise, we defined 
a function that applies a random brightness change to the images. Receipts images 
are expected to be better aligned and to contain less random shadows, so the 
expected digit images are only varying in brightness according to the lighting level 
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where the photo is being taken and the camera that takes the picture. For that reason, 
any other augmentation would add unnecessary complications and noise to the DL 
model. Using this method of data augmentation, we created 1.200 images in our 
receipt prices dataset, containing 100 images of each digit (0-9), 100 images of 
commas, and 100 images of noise (anything that isn’t a digit or a comma is considered 
noise -this includes other characters as well). For the image preprocessing, we padded 
and resized the images to fit 10 width x 20 height, approximately the ratio that most 
digits in our Receipts dataset have. 

As can be seen on the right side of Fig.3.4, the proposed CNN model 
architecture used for identifying the Receipt Prices is a similar model to the one used 
for the Product Prices, with the same number of layers but with the following 
configuration: 
 

1. 20 units of a 2D CONV layer with a kernel size of 2×2, strides of 1×1, and 
ReLU activation function. This reduces the image from 20×10×1 to 19×9×20 
and adds 100 trainable parameters. 

2. A max-pooling layer with a pool size of 2×2 followed by a dropout rate of 0.5. 
This reduces the image to 9×4×20. 

3. A dense layer with 20 outputs and a ReLU activation function that adds 14.420 
trainable parameters. 

4. A dense layer with 12 outputs and a Softmax activation function that adds 
252 trainable parameters. 

 
The optimizer, LR, and the loss function are the same as the ones described 

in Phase 1. For both network designs, the procedure was to start with a minimal 
architecture (1 CONV unit, max pooling, and an FC layer) but in both cases (products 
and receipt) it was not enough to learn the features. We then added a second FC layer 
with 12 units (the same size as output, which is proven [31] to be able to solve any 
classification problem if given enough units), but the results were only slightly better, 
so we added more units to the CONV layer to be able to obtain different local features 
from the images. After this step, the model overfitted on the training data, which 
made us add a dropout with a 0.5 rate before the CONV unit (in both cases) to 
eliminate it. The results regarding product price detector were very good, but not 
regarding receipt. Since input images are smaller in receipt prices, the CONV layers 
are 2×2, meaning that the amount of trainable parameters is less; for this reason, 
the receipt price detector has more CONV and FC units. Also, in the receipt case, the 
dropout performed better after the max pooling. 
 
 

3.1.4. Android Application GUI 
 

The proposed receipt fraud application is composed of two views: Products 
(Items) view” and “Receipt view”, each of them having 3 frames (header, body, 
footer). 

We implemented the Android smartphone application using Python 
programming language. For the image processing, handling the camera and image 
storage, we used the OpenCV library; for the application development, we used the 
Kivy Framework [152], and finally, for deploying the application into an Android app, 
we used the generic Python packager called Buildozer [153]. 

In the case of products, as can be seen in Fig.3.5, the header frame presents 
the user a button for adding new products he/she intends to buy, called “Add item” 
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as well as the “Total price” field, which represents the total price of all products added 
in the shopping cart (sum of all rows from column 4 explained below). 
 

 
Fig. 3.5. Summarized Android GUI view of the proposed Receipt Fraud application: Products 

(Items) View (1 and 2); Receipt View (3); Products (Items) View after price comparison 
between Receipt and Products was made and Price is equivalent (4) or not equivalent (5). 

 
The body frame contains 4 columns. After pressing the “Add item” button 

from the header section, Column 1 presents two buttons called “Add picture”, meaning 
that the user should take a picture of the product he/she intends to buy and “Add 
price tag”, meaning that the user should take a picture of the product price tag. After 
taking the picture of the price tag, a third button appears called “Crop Price” which 
gives the user the option to perfectly crop only the price out, representing the price 
of the product (digits separated by a comma) from the price tag. This is important 
because, usually, on a price tag there are many other characters and digits 
representing the name of the product, name of the company, the price/Kg, barcode, 
etc., and detecting all of them will be out of the scope of this application. All these 
three pictures (full product, price tag, and crop from price tag) will be stored in column 
1, all in the same row that belongs to a single product, the user having the possibility 
to enlarge or edit them at any time. The decision for allowing the user to take a picture 
of the full product instead of just the price tag is because it can be a very important 
part of the proof, in case of a receipt fraud. Column 2 shows the unit price which is 
the identified price by our first CNN model which received the cropped price tag image 
as input. In case of failure regarding digit extraction, the prices can also be edited. 
Column 3 gives the user the option to enter the number of times he/she intends to 
add a product he intends to buy in the shopping cart. By default, every product 
receives an amount value of “×1” and can be increased (e.g. in case the user wants 
to buy more times the same product) or decreased to the amount value of “×0” 
meaning that the product will be removed from the grocery list. Column 4 presents 
the total price per row for every product added in the shopping cart (e.g. if a product 
costs 1.50 but the number of times in column 3 is ×2, the total price per row in column 
4 will be 3.00). The footer frame shows a “Finish” button meaning that all products 
intended to be bought are added, cropped, and prices correctly identified and the user 
is now ready to take a photo of the receipt. 

In the case of receipts, as can be seen in Fig.3.5, the header frame shows the 
user a button for adding a receipt photo called “Add receipt” as well as a button for 
cropping the multiple prices vertically aligned on the right side of the receipt called 
“Crop receipt”. The body frame contains 3 columns. Column 1 shows the picture of 
the receipt taken by the user. Column 2 shows the picture of the vertically aligned 
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cropped prices from the receipt photo, which our second CNN will receive as an input. 
Column 3 presents the identified prices (containing digits and commas) by our second 
CNN model. In case of failure regarding digit extraction, these prices can be also 
edited. The footer frame shows a button called “Return to items” which is necessary 
to be used after detecting the receipt prices, in order to go back and see the price 
comparison results (entire row of a product that has a different price than that found 
on the receipt will have a red-colored background, otherwise, if the price is equivalent, 
it will have a green-colored background) between products and receipt.  

It is important to know that after installing the application, the first thing that 
needs to be done is to allow camera permission from the Android Settings Menu. The 
smartphone application was compiled using Python 3.6.7, OpenCV 4.0, and Kivy 
1.11.0.dev0. We tested the app with a Moto Z Play Android smartphone. The Moto Z 
Play includes a 5.5-inch 1080p display, an octa-core Qualcomm Snapdragon625 
system-on-chip, and 3 GB of RAM. The application takes 3 seconds to open. The 
average memory use of the application is always less than 10MB. After an hour of 
use, the application consumed 5% of battery (120 milliampere-hour (mAh)). 

The app is installed locally and doesn’t require a network connection, works 
smoothly, without lag, except when processing images. When it is detecting a price 
tag it takes about 1 second to do it. When processing a receipt the time is longer, 
depending on how many contours the algorithms found in the image. It takes an 
average of 1 second per item. 

The size of the .apk file is around 21MB and when installed on the smartphone 
device, the size of the smartphone application is 73MB (OpenCV used in the image 
processing algorithm together with the 2 proposed CNNs). 

By implementing an OCR ourselves, we succeeded to adapt it to our specific 
dataset, resulting in a smartphone-friendly model that can handle noise very well, 
unlike other OCR methods [70]. 
 
 

3.1.5. Experimental Setup and Results 
 

For the experimental setup, it is important to notice that our two models were 
trained on a Desktop-PC with the following configuration: on the hardware side, we 
use an Intel(R) Core(TM) i5-6600 CPU @ 3.30GHz and a GIGABYTE GeForce GTX 1060 
WINDFORCE 2 GPU with 6GB GDDR5 memory; on the software side, we use an 
Ubuntu distribution of Linux, version 18.04, together with Keras 2.2.0 framework 
using Tensorflow 1.10. 

During training, for the first proposed CNN model, regarding the recognition 
of prices with commas from products, we applied it to the augmented data for 200 
epochs, with a batch size of 100 and a validation split of 10%. We obtained 98% 
training accuracy after 18 epochs and at the end of the training, we obtained 99.84% 
accuracy, 99.50% validation accuracy, and an overall 99.96% test accuracy, as can 
be seen in Table 1. 

 
Table 1. Test Accuracy and other metrics of the CNN model regarding Product Prices. 

Class Samples Test 
Accuracy 

Precision Recall F1-
Score 

0 37 1 1 1 1 

1 125 1 1 1 1 

2 147 1 1 1 1 
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3 41 1 1 1 1 

4 72 1 1 1 1 

5 19 1 1 1 1 

6 21 1 1 1 1 

7 38 0.99 1 0.97 0.98 

8 8 1 1 1 1 

9 365 0.99 1 0.99 0.99 

Comma 365 0.99 0.99 1 0.99 

Noise 41 0.99 0.97 1 0.98 

Overall Test Accuracy 99.96% 

 
Additionally, the accuracy and loss results during training and validation of 

the CNN model regarding Product Prices, are presented in Fig.3.6. 
 

 
Fig. 3.6. Training and Validation Accuracy (Top) together with Training and Validation Loss 

(Bottom) for the CNN model regarding Product Prices. 
 

Also, for the second proposed CNN model, regarding the recognition of prices 
with commas from receipts, during training on the same setup, we applied it to the 
augmented data for 1.100 epochs, with a batch size of 1200 and a validation split of 
10%. We obtained 99% accuracy after 360 epochs and at the end of the training, we 
obtained 100% validation accuracy, and an overall 99.35% test accuracy, as can be 
seen in Table 2. 
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Table 2. Test Accuracy and other metrics of the CNN model regarding Receipt Prices. 

Class Samples Test 
Accuracy 

Precision Recall F1-
Score 

0 28 0.99 1 0.96 0.98 

1 29 0.97 0.68 1 0.81 

2 17 1 1 1 1 

3 12 0.97 1 0.57 0.72 

4 7 1 1 1 1 

5 22 1 1 1 1 

6 13 1 1 1 1 

7 7 1 1 1 1 

8 6 1 1 1 1 

9 43 1 1 1 1 

Comma 69 0.98 0.98 0.95 0.97 

Noise 107 0.98 0.96 0.99 0.97 

Overall Test Accuracy 99.35% 

 
Additionally, the accuracy and loss results during training and validation of 

the CNN model regarding Receipt Prices, are presented in Fig.3.7. 
 

 
Fig. 3.7. Training and Validation Accuracy (Top) together with Training and Validation Loss 

(Bottom) for the CNN model regarding Receipt Prices. 
 

More details regarding the number of samples used for the test accuracy of 
both CNN models as well as other metrics values like Precision, Recall, and F1-Score 
[154], can be seen in Table 1 and Table 2. 
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 Because of the very small size of our model’s architecture, especially the one 
used in Phase 1, it is important to mention that it is possible to run the training even 
on any other smaller personal hardware device, which is an important advantage. 
 In order to validate the decision of creating our own OCR implementation with 
regard to recognition accuracy and speed, we compared the proposed OCR with the 
Tesseract OCR Engine [69] on the same system configuration and the same number 
of samples. 
 As can be seen in Table 3, the proposed OCR outperforms Tesseract by a large 
margin regarding test accuracy on images with cropped Product and Receipt prices 
from our dataset. 
 

Table 3. Recognition Accuracy and Speed Comparison between the proposed OCR 
and Tesseract OCR on images with cropped Product and Receipt prices. 

Accuracy Test Samples 
Proposed 

OCR 
Tesseract OCR 

[69] 
Cropped Price tags 254 98.43% 51.18% 

Cropped Receipt prices 32 71.87% 3.12% 

Speed Test Samples 
Test Time 

[s] 

Average 
Time/Recognition 

[ms] 
Cropped Price tags proposed 

CNN 254 
6.6 24.2 

Cropped Price tags Tesseract 27.34 101.9 
Cropped Receipt prices 

proposed CNN 
32 

3.51 685.3 

Cropped Receipt prices 
Tesseract 1.02 186.4 

 
The first CNN, regarding price tag recognition, is 47% more accurate and 76% 

faster than Tesseract, while the second CNN, regarding receipt prices recognition, is 
68.57% more accurate than Tesseract, but due to our image preprocessing, Tesseract 
performs the inference 70% faster than the proposed method. 
 
 

3.2. Identification of Traditional Motifs using 
Convolutional Neural Networks 
 

Ancient knowledge was preserved in many places around the globe in many 
forms (architecture, wood carving, pottery, etc.), one of them being the form of motifs 
sewn in the textiles. Often, these traditional motifs are found in clothes that are copied 
without permission or without giving credit by the international clothing design 
industries [155], [156] as seen in Fig.3.8. Romanian traditional motifs are beautiful 
patterns that help the Romanian traditional clothing be characterized by unity (such 
as the composition of the garment, the raw material from which the pieces of clothing 
are made, the tailoring, the harmonious fresh colors, or by the stitching points) and 
by continuity (evolution of clothes over the years) [173], [174]. 
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Fig. 3.8. Example of cultural appropriation of traditional clothes by major brands [155]. 

 
In order to prevent cultural appropriation and the takeover (or theft) of 

traditional clothes by major brands [155, 156], this work contributes to proposing a 
method for the classification of Romanian traditional motifs using CNNs and which, 
when compared to other traditional manually-designed feature extraction methods, 
outperforms them by a large margin. 
 
 

3.2.1. Proposed System Design for Classifying Romanian 
Traditional Motifs 
 

We propose a system that inherits the advantages of ResNet-50 architecture, 
the most important ones being to obtain higher accuracy and faster training 
performance regarding image classification. Our model is trained using the Keras 
framework, a Tensorflow high-level API written in Python, and integrated into the 
proposed classification system. For training and processing the features detected in 
the hidden CONV layers, a CPU as well as a high-performance GPU were used. Using 
a webcam, these detected features (motifs) are identified by the proposed CNN, as 
shown in Fig.3.9. 
 

 
Fig. 3.9. Summarized data flow of our detection and identification system. 

 
We trained the proposed model on the widely known academically dataset 

called ImageNet using a modified ResNet-50 architecture, as seen in Fig.3.10, which 
was initially loaded with pre-trained weights. 
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Fig. 3.10. Our proposed network architecture (left) and a typical ResNet (right). The dotted 

arches represent an increase in dimension. 
 

ResNet-50 is chosen for its favorable properties in transfer learning and also 
because it achieves better accuracy than VGGNet and GoogLeNet while being 
computationally more efficient than VGGNet [128], as the experimental results prove. 
Also, because ResNet-50 is quicker to train than the deeper variants, thus allowing 
for more hyperparameter tuning. 

We modified these weights by training on the images from 5 categories (4 
categories for the motif classes: clothes, ceramics, carpets, painted eggs, and a fifth 
category for images not representing any of the learned motifs) without the FC and 
the previous layer. Instead, we added 3 CONV layers, equivalent to FC layers, each 
accompanied by a 50% dropout and a BN layer. The neural network architecture is 
completed by a final flattening layer followed by the output dense layer consisting of 
5 neurons corresponding to the 5 classes. In order to reduce the complexity of training 
the network, consisting of 36.392.834 parameters, we trained on phases, for 56 
epochs. In Fig.3.11, the top-left figure shows how fast the accuracy evolved through 
the 56 epochs used for training. 
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Fig. 3.11. Train and Validation Accuracy (top) as well as Train and Validation Loss (bottom) of 

the proposed model. 
 

For increasing the performance of the proposed network, before the actual 
training, we reduced the size of all images belonging to the 5 categories to 256 pixels 
by keeping the aspect ratio and trained them with a batch size of 32. The need for 
resizing the images arises due to the network size, available GPU computation power, 
and size of the receptive field. By scaling down the images, our network is able to 
identify the key features in the initial layers instead of being learned later, resulting 
in less computation per layer and fewer memory requirements. Additionally, in order 
to increase the amount of relevant data in our dataset, we apply data augmentation. 
This helps our CNN model to robustly classify objects that may exist in a variety of 
conditions, such as different orientation, scale, brightness, location, etc., resulting in 
our CNN model to gain the invariance attribute. The following data augmentations are 
applied: horizontal flipping with a probability of 0.5; zoom in the range of 0.8 and 1.2 
of the original image and sheer transformation with a shear angle of 0.2. Finally, in 
order for the network to converge faster, the per-channel mean of the ImageNet 
dataset is subtracted from the input images. In other words, the mean of red, green, 
and blue (RGB) channels are subtracted. This is a common practice, as even the pre-
trained ResNet-50 had the images preprocessed in this way [27]. 

As expected, the accuracy increased above 99% in the last 16 epochs. 
However, the train loss graph seen at the bottom left of Fig.3.11 exposes the error 
on the training dataset where the error was under 4% in the last 13 epochs, hitting 
the minimum error of 2,67% in the 53rd epoch and then slightly rising. Because the 
validation accuracy seen in the top-right of Fig.3.11 stays above 99% in the last 26 
epochs and the validation loss seen in the bottom-right of Fig.3.11 was under 3% for 
the last 17 epochs, we decided to end the training process at the 56th epoch in order 
to avoid overfitting the training set. The graphs seen in Fig.3.11 are useful in 
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evaluating the performance of the training and how effectively the proposed CNN 
architecture was trained. Because ResNet-50 was pre-trained on ImageNet (the size 
of this dataset is around 150GB, which consists of 1.2 million labeled images and 1000 
categories in the training set as well as 50.000 images, 50 per class, in the test set), 
the first few layers already captured universal features like curves and edges that are 
relevant to our problem. In consequence, we decided on making the proposed 
network to focus on learning only the new dataset-specific features (the dataset 
containing the traditional motifs) in the subsequent layers. For this, first, we trained 
only the last 3 CONV layers, then the last 1/3, and finally the last 2/3rds. As 
mentioned earlier, we used one dataset of positive samples with images from the 4 
categories containing Romanian traditional motifs and another dataset from ImageNet 
for the negative samples. These negative samples were drawn randomly from 
ImageNet in each training epoch, up to the number of positive samples. Since it is 
much larger than the positive examples dataset, we use only a fraction (2%) of 
ImageNet. This allows the model not to be overwhelmed by negative examples and 
to learn new parameters from the positive ones. This 2% portion of ImageNet is 
randomly selected at the beginning of each epoch. Before training, we resize each 
input image to 256×256 pixels and take random 224×224 crops out of it. 

The modifications to the standard ResNet-50 architecture can be seen in 
Fig.3.10 presented earlier and are as follows: 

 
1. We remove the last FC layer and the global average pooling layer before it. This 

is done in order to give the next, newly added layers more fine-grained 
information. 

2. The ResNet-50 architecture applies seven bottleneck (they are called “bottleneck” 
because it adds the activations of two branches in one) blocks which include CONV 
layers with a stride of 2 and a single max pooling layer with a stride of 2, thus 
reducing the size of the input image 32 times. Since we start off with 224×224 
pixel images, the activations map that is output by ResNet-50 has a 
dimensionality of 7×7×2048. More exactly, the bottleneck blocks which include a 
stride of 2 and the max pooling, are reducing the dimensions 32 times 
(224/32=7). Thus, we add a CONV layer with a kernel size of 7×7 and 128 filters. 
This layer is able to capture the knowledge present in the output of the pre-trained 
ResNet-50 while lowering the dimensionality. 

3. We then add two CONV layers with a kernel size of 1×1 and 64 filters. These 
layers are equivalent to FC layers with 64 units. The reason for making this choice 
is because traditional CONV networks having FC layers cannot manage different 
input sizes, whereas fully CONV networks have CONV layers that can do this. 

4. All three CONV layers described above use ReLU activations. Each CONV layer in 
the proposed network architecture is followed by a dropout layer with a rate of 
0.5 and a BN layer. We chose a dropout value of 0.5 because it regularizes the 
network effectively for the purpose of our work. The BN layer gives our CNN model 
resistance to vanishing gradient during training by decreasing the training time, 
resulting in a better performance. 

5. Finally, a Softmax-activated CONV layer with a kernel size of 1×1 and 5 filters 
follows. The layer uses a Softmax activation function to classify the input image 
characteristics generated in different classes based on the training dataset. 

 
For training, since there are no balanced samples in each class (ImageNet = 

456.567 images, Carpets = 132 images, Ceramics = 4.688 images, Clothes = 19.549 
images, and Painted eggs = 190 images), we oversample the Carpets and the Painted 
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eggs classes 8 times. We do oversampling only on training data in order for our model 
to generalize better on new data. Examples of random images from the 4 categories 
(clothes, ceramics, carpets, painted eggs) identified by our CNN model can be seen 
in Fig.3.12. 
 

 
Fig. 3.12. Example of random images from the 4 categories (clothes, ceramics, carpets, 

painted eggs) identified by our model. 
 

We utilize the following training schedule: 
1. First, we freeze the weights and biases on the pre-trained ResNet-50 network and 

train only our newly added layers for 5 epochs with a LR of 0.1, for the next 3 
epochs with LR of 0.01, and for the next 3 epochs with LR of 10-3. This enables 
these randomly-initialized layers to train without perturbing the earlier layers. 

2. Then, the first 10 bottleneck blocks of ResNet-50 are kept frozen, and the rest 
are trained with an LR of 10-4 and 10-5 for 5 epoch each. After this, 6 more 
bottleneck blocks are thawed and trained for with LR of 10-4 and 10-5 for 5 epoch 
each. 

3. Finally, the whole network is trained for 20 more epochs with an LR of 10-5. 
 

Also, in order to keep track of the accuracy results after every epoch, 
checkpoints and logs files are automatically generated and saved. This is important 
not only for keeping the training records but also because the whole dataset doesn’t 
need to be retrained in case of possible errors. As mentioned earlier, we implemented 
the proposed model in order to detect and identify motifs using a webcam. First, we 
do inference using the trained model to detect the predominant class in the image. 
Then, in order to see what part of the identified class contributed the most to the 
successful classification, we apply the Gradient-weighted Class Activation Mapping 
(Grad-CAM) algorithm [157]. The Grad-CAM approach adds more interpretability 
(simplicity) [158], transparency, and trust [159] in our model. An example of how 
two classes (ceramics and clothes) are being detected, can be seen in Fig.3.13. 
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Fig. 3.13. Top Left: Detection of Ceramics class (i.e. Horezu). Top Right: Detection of Clothes 

class (i.e. IA). Bottom: Grad-CAM heatmap is generated for both classes. 
 

One important aspect to notice here is that after the Grad-CAM technique is 
applied, the image gets automatically zoomed for better clarity of what part of the 
detected class contributed the most (where the CNN identified motifs in the image to 
actually distinguish between the classes) to the prediction accuracy. 
 
 

3.2.2. Experimental Setup and Results 
 

For the experimental results regarding training and testing of our model, we 
make use of a Desktop PC system that has the following configuration: on the 
hardware side, we use an Nvidia GTX 1080 Ti GPU together with an Intel-Core i5-
7500 3.4GHz Quad-Core Processor. On the software side, we used an Ubuntu 
distribution, version 16.04 together with CUDA 9 [160], CuDNN 7 [161], and 
Tensorflow 1.5 using the Keras framework. 

The experimental results of the proposed model’s accuracy are summarized 
in Table 4 and show that our novel CNN model implementation is able to classify the 
Romanian traditional motifs found in 4 categories (carpets, ceramics, clothes, and 
painted eggs) with high accuracy and reduced processing time. 

 
Table 4. Test Accuracy together with other metrics values and webcam processing time. 

Identified 
Classes 

Test 
Accuracy 

[%] 
Samples Precision Recall F1-

Score 

Webcam 
Processing 
Time [ms] 

Carpets 92.8 14 1.0 0.93 0.96 47.7 
Ceramics (e.g. 

Horezu) 98.4 459 1.0 0.98 0.99 46.8 

Clothes (e.g. 
IA) 99.3 1944 1.0 0.99 1.00 4.8 

Painted Eggs 100 20 1.0 1.00 1.00 48.7 
ImageNet 99.7 2555 0.99 1.00 0.99 0.04 
Overall 

Accuracy [%] 99.4 
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However, it is important to notice here that for the webcam detection, 

identification, and processing time, we use an Asus ROG-GL752VW Laptop with an 
Intel-Core i7-6700HQ 2.6GHz CPU having an NVIDIA GeForce GTX 960M with 2GB 
memory. In order to show how well our system performs the classification task of 
Romanian traditional motifs found on the 4 categories, we also presented the 
Precision, Recall, and F1-Score metrics values in Table 4. 

The model comparison results presented in Table 5, clearly show that the 
proposed ResNet-50 model outperforms other architectures in classification accuracy, 
and by means of Keras’ Grad-CAM technique, our solution can be used with high 
confidence when it comes to features extraction. 
 

Table 5. Model Classification Comparison Results 
Models Grad-CAM Accuracy [%] 

SVM [162] 

NO 

35.0 

Random Forests [162] 38.3 

Transfer Forests [162] 41.4 

Fine-tuned FC Layers CaffeNet [76] 46.0 

Fine-tune All Layers CaffeNet [76] 50.2 

CNN [163] 61.2 

AlexNet [38] 81.8 

VGG_S [38] 82.9 

Deep CNN [80] 84.5 

Inception v3 [79] 98.2 

Our proposed model YES 99.4 

 
 

3.3. Real-Time Identification of Animals Found in 
Domestic Areas of Europe 
 

 The world’s human population is constantly growing and the necessity for 
shelter and food is pushing our civilization towards exploring new areas and building 
residential areas there. A consequence of this is that unaware, we are destroying 
many flora and fauna habitats, thus steps towards preserving biodiversity are of major 
importance. Regarding animals, in order to track and monitor them, classical animal 
recognition methodologies like ear tattoos, embedded microchips, or transponders in 
the electronic devices, sensors, and radio frequency identification (RFID) [164] were 
used for many years and are still in use today. These methods are intrusive in their 
nature and depend heavily on the direct contact between humans and animals (e.g. 
when tagging them for research purposes). A minimally intrusive and remotely 
method in monitoring and identifying animals is that of using camera traps (e.g. 
especially in the case of wild animals), but a common limitation is that it requires 
spending a huge amount of time to manually label and classify these images (which 
can reach millions) [11]. This is due to the complexity of the real-life pictures analyzed 
which can contain perturbations regarding background, illumination, position, 
posture, inter-class variations, etc. In order to accelerate the discovery, tracking, and 
monitoring of animal species that are on the verge of extinction, the recent AI 
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algorithms, e.g. DL, are showing promising results. An example in this direction is 
Microsoft’s AI for Earth project [165]. 

Considering the animals found in domestic areas, in the case of residents or 
farmers, the need to avoid accidents (e.g. animal-vehicle collisions) or maintain the 
security of their domestic animals and crops against wild animals is also crucial and 
show a clear demand for systems that can automatically detect, classify and store 
information about the identified animal class, regardless of real-life scenarios and 
challenges. 
 
 

3.3.1. Proposed Real-Time Animal Class Identification System 
 

The proposed real-time animal class identification system is composed of two 
main processes called Main Process and Inference Process, as can be seen in Fig.3.14. 
 

 
Fig. 3.14. Summarized view of the proposed real-time animal class identification system. 

 
The Main Process is responsible for the model-specific preprocessing (e.g. 

normalization of the RGB input channels), for the real-time stream preprocessing (e.g. 
resizing the full-size frame from the webcam/video to 256×256 pixels and doing a 
center and random crop for a better association of different parts with the 
corresponding animal class) and for making a certain number of streamed frames 
available to the Inference Process. The real-time stream preprocessing is realized with 
the help of the OpenCV library in the Main Process (because of issues running OpenCV 
in a multiprocess environment). In order to know how many fps our system (the 
computer used for running the proposed model) can perform inference on, initially, 
before running the Inference Process, a speed test is performed. This speed test is 
measuring the inference speed for 1, 2, 4, 8, 16, and 24 frames as well as the 
inference time for each number of frames. The speed test is relevant because it helps 
to make available a higher number of images per second (e.g. 4 frames instead of 1 
frame) to the Inference Process, increasing the chances of a better prediction. When 
tracking the predicted animal class, the Main Process is taking the decision of 
generating the 2 datasets, one containing textual information and the second one 
containing images, in real-time by verifying which animal class was present the most 
in the last 3 seconds over other animal classes and "nothing detected" class. This rule 
will help reduce misdetections. 

As mentioned earlier, in order for the proposed real-time animal class 
identification system to have increased recognition accuracy, we decided to train four 
state-of-the-art CNNs for image classification using Keras framework with Tensorflow 
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backend. More exactly, we fine-tuned the VGG-19 [38], InceptionV3 [40] ResNet-50 
[27], and MobileNetV2 [43] architectures, each of them having a different number of 
trainable parameters and prediction accuracy. 
 The first architecture we trained our model on is called VGGNet [38], which 
was originally proposed in 2014 when it won first place in the ILSVRC challenge 
regarding image localization as well as second place regarding image classification. 
More exactly we make use of the VGG-19 version, composed of 19 weight layers, 16 
CONV, and 3 FC layers. 

As can be seen in Fig.3.15, because the original VGG-19 architecture didn’t 
work well on our dataset, we modified it by a) adding a GlobalAveragePooling layer 
after the last MaxPooling layer; b) removing the first Dense/FC layer; c) modifying 
the number of units of the second Dense/FC layer from 4096 units to 1024; d) 
modifying the number of units in the last Dense/FC layer from 1000 units to 34 
representing our animal classes. It is important to mention that the proposed VGG-
19 architecture has 12.3 million trainable parameters as compared to around 144 
million parameters of the original VGG-19 and uses ReLU as the activation function 
for all layers but the last one, which uses the Softmax activation function. 
 

 
Fig. 3.15. Proposed (left) and Original (right) VGG-19 architecture. 

 
The second architecture we trained is called InceptionV3 [40] which was 

proposed in 2015 in order to increase the ImageNet classification accuracy. We 
summarized the proposed InceptionV3 architecture in Fig.3.16 where, in order to 
present a compacted view, we present a compressed view of it. 
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Fig. 3.16. Schematic diagram of the proposed InceptionV3 model architecture (compressed 

view). 
 

It is important to mention that all CONV layers are followed by a BN layer as 
well as a ReLU activation function. Due to the GlobalAveragePooling layer, all the 
channels after the last CONV layer are averaged out, reducing the number of 
parameters, thus having a smaller weights size than the original VGG and ResNet 
architectures. More exactly the proposed InceptionV3 architecture has 23.9 million 
parameters. Regarding the last 2 Dense/FC layers, the first FC is having 1024 units 
and ReLu as the activation function and the second one is having 34 units representing 
the animal classes and Softmax as the activation function. We used the SGD optimizer 
with an initial LR of 0.01, momentum 0.9, and categorical cross-entropy as the loss 
function. 

 The third architecture we trained is called ResNet [27]. More exactly, we use 
a conventional version of ResNet called ResNet-50 which has 25.6 million trainable 
parameters across 49 CONV layers and 1 FC layer and which we modified by removing 
the top FC layer with outputs for 1000 target classes, and replacing it with an FC layer 
with outputs for 34 target classes, as seen in Fig.3.17. Replacing the last ResNet-50 
layer with a single layer worked best for our scenario. More expressive replacements 
(e.g. 3 FC layers of respectively 256, 128, 64 units) were tested but were found to be 
hard to train and inaccurate, the reason for this being the limited number of images 
available. An example of an architecture setup that didn’t work well was: ResNet-50 
-> FC layer with 64 units (ReLU activation) -> BN -> FC layer with 34 units (Softmax 
activation). It is important to mention that we use ReLU as the activation function not 
only after the first BN layer but also after all BN layers inside the 16 residual blocks 
consisting of 4 CONV BLOCKs and 12 IDENTITY BLOCKs (each having 3 CONV layers 
= 48 CONV layers). Only after the FC layer with 34 units, we use Softmax as the 
activation function. The identity shortcuts are presented as solid and dotted lines 
shortcuts; the solid lines are used where the input, as well as the output, has the 
same dimensions, whereas the dotted lines are used where their dimension is 
different. 
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Fig. 3.17. Proposed ResNet-50 architecture with the last FC layer having 34 outputs 

representing the animal classes. On the right side are presented the identity shortcuts between 
all residual blocks (solid lines when the input and output have the same dimensions; dotted 

lines when otherwise). 
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As mentioned earlier, the ResNet-50 architecture is more computationally 
efficient than other architectures such as the VGG and GoogLeNet, requiring 0 extra 
parameters, having considerably fewer operations (e.g. ResNet with only 34 layers 
requires 18% of the operations compared to a VGG with 19 layers) and achieving 
better accuracy. We used SGD as the optimizer (initially we experimented with Adam, 
but SGD proved to give better results) with an initial LR of 0.01, the momentum of 
0.9, and categorical cross-entropy as the loss function. 
 Forth and last architecture we trained our model on is called MobileNetV2 [43] 
which was released in 2018 at the Conference on Computer Vision and Pattern 
Recognition (CVPR) and which outperforms all other 3 architectures presented earlier 
regarding training and testing accuracy on our animal images dataset. Moreover, it is 
a very light-weight architecture that uses in our case 6.1 million trainable parameters, 
being much more efficient than all other architectures we trained our model on. 
MobileNetV2 is suitable for mobile devices because it requires less space, memory, 
and computation, thus it can run faster (e.g. when running inference in real-time). 

The proposed MobileNetV2 architecture can be seen in Fig.3.18 and is 
composed of 10 blocks of stride 1 and 6 blocks of stride 2, each having ReLU6 as the 
activation function after the 3×3 depthwise CONV layer. Because each stride block is 
composed of 3 CONV layers, the entire architecture is composed of a total of 52 CONV 
layers, 1 GlobalAveragePooling layer as well as 2 Dense/FC layers. It is important to 
mention that the first Dense/FC layer with 1024 units has ReLU as the activation 
function and the second (last) Dense/FC layer with 34 units representing the animal 
classes, has Softmax as the activation function. We used SGD as the optimizer with 
an initial LR of 0.01, the momentum of 0.9, and categorical cross-entropy as the loss 
function. 

In practice, it is very rare to have a self-made dataset consisting of millions 
of images and very common to have small datasets consisting of hundreds or a few 
thousands of images. With the size of a dataset reaching hundreds of thousands of 
images, the complexity of a neural network also grows, this being the reason why 
DNNs consisting of millions of parameters are very expensive to train, with most 
complex models taking weeks (for example, the original ImageNet ILSVRC model was 
trained on 1.2 million images over the period of 2-3 weeks across multiple GPUs). In 
order to avoid this problem, we fine-tuned our models. More exactly, we use a pre-
trained version of all 4 architectures on the ImageNet dataset which already provides 
us with the learned features relevant for our animal class identification problem. We 
apply fine-tuning instead of training from scratch, in order to prevent overfitting, 
reduce the training time, and benefit the environment [8]. 

We carry out experiments on a home-made dataset containing animal images 
from personally made pictures (for some of the classes), as well as animal pictures 
from other online resources, scrapped for educational purposes with the help of a 
home-made Python script. Because the home-made Python script randomly searched 
for thousands of images containing the name of this classes all over the Internet (thus 
the reason we cannot reference the image sources), many of the images found were 
noisy, meaning that additional manual data filtering was required for removal of 
invalid images. Because the scope of our work is related to animals found only in 
domestic areas of Europe, we considered only 34 species. 
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Fig. 3.18. The proposed MobileNetV2 architecture. 
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More specifically, our training dataset contains, as can be seen in Fig.3.19 and 

Fig.3.20, a number of 34 classes (bat, bear, canary, cat, cattle, chicken, deer, dog, 
donkey, duck, fox, frog, goat, goose, hamster, hedgehog, horse, lizard, magpie, mole, 
owl, parrot, pig, pigeon, rabbit, raven, sheep, snake, sparrow, squirrel, stork, tortoise, 
turkey, and woodpecker), each with large variations in scale, lighting and pose. 
 

 
Fig. 3.19. Weights by Class for the considered 34 animal classes. 

 
The training, validation, and test sets were having a total number of 90.249 

images (72.469 images for training, 8.994 images for validation, and 8.786 images 
for testing). 

Before training, we resize each input image to 256 pixels by maintaining the 
weight by height ratio and take 224×224 pixels random crop out of it. This helps out 
the network to learn key features in the early layers rather than later, resulting in 
faster training and less memory used. Also, because pooling layers induce 
translational invariance, our CNN model is able to robustly classify images of animals 
that can exist in a variety of conditions, such as location, brightness, orientation, 
scale, etc. In order to increase the amount of relevant data in our dataset, we apply 
data augmentation (horizontal flipping with a probability of 0.5; zoom 0.1 of the 
original image as well as shear transformation with a shear angle of 0.1). The resized 
version of our dataset (train, validation, and test set) consists of a total of 90.249 
images. 

Following, we will present all 4 architectures (VGG-19, InceptionV3, ResNet-
50, and MobileNetV2) our model is trained on in order to determine the most efficient 
(reaching the highest validation accuracy with the lowest number of parameters and 
training time) one. During training, each class was weighted to give more importance 
to classes that are underrepresented. For example, as seen earlier in Fig.3.19, dog 
and cat classes were heavily underweighted (0.09199101 and 0.16943509) because 
of the large number of training samples in these classes. In order to decrease the 
training time as well as estimate the error rate of the loss function, we make use of 
the following callback functions from Keras: EarlyStopping with patience (number of 
epochs with no improvement after which LR will be reduced) of 10 and 
ReduceLROnPlateau with a factor (by which the LR will be reduced) of 0.2 and patience 
of 3. 
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Fig. 3.20. Random images from our training dataset. A total number of 34 classes representing 
animals found in domestic areas of Europe (bat, bear, canary, cat, cattle, chicken, deer, dog, 
donkey, duck, fox, frog, goat, goose, hamster, hedgehog, horse, lizard, magpie, mole, owl, 

parrot, pig, pigeon, rabbit, raven, sheep, snake, sparrow, squirrel, stork, tortoise, turkey, and 
woodpecker). 

 
 We trained our VGG-19 model consisting of 12.359.202 trainable parameters 

with a batch size of 64 on a number of 72.469 train images belonging to 34 animal 
classes for 27 epochs in the following training schedule: 

 
1. First, we trained the first 13 epochs with an LR of 0.0001. This brought the 

validation loss to 0.33725 and validation accuracy to 89.84%. 
2. Next, we trained for 6 more epochs: 3 epochs with a LR of 2e-05 and 3 epochs 

with a LR of 4e-06. This didn’t improve the validation loss but increased the 
validation accuracy to 90.84%. 

3. Finally, we trained for 8 more epochs, 3 epochs with a LR of 8e-07, 3 epochs 
with a LR of 2e-07, and 2 epochs with a LR of 3e-08. This didn’t improve the 
validation loss and validation accuracy, so we decided to stop the training, 
leading to convergence at 90.56% overall test accuracy, as can be seen in 
Fig.3.21 and Table 6. 

 

 
Fig. 3.21. Train and Validation Accuracy (left), Train and Validation Loss (middle) as well as LR 

(right) of the proposed VGG-19 model. 
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The total amount of time needed to train the 27 epochs of the proposed VGG-

19 model was 20.273 seconds (around 5 hours and 37 minutes). 
 We trained our InceptionV3 model consisting of 23.901.378 trainable 

parameters with a batch size of 64 on a number of 72.469 train images belonging to 
34 animal classes for 51 epochs in the following training schedule: 

 
1. First, we trained the first 12 epochs with an LR of 0.01. This brought the 

validation loss to 0.38108 and validation accuracy to 89.16%. 
2. Next, we trained for 7 more epochs with an LR of 0.001. This brought the 

validation loss to 0.25620 and validation accuracy to 94.06%. 
3. Next, we trained for 16 more epochs: 3 epochs with a LR of 0.0003, 3 epochs 

with a LR of 8e-05, 3 epochs with a LR of 2e-05, 3 epochs with a LR of 3e-06, 
and 4 epochs with a LR of 6e-07. This brought the validation loss to 0.25176 
but without improving the validation accuracy. 

4. Finally, we trained for 16 more epochs: 3 epochs with a LR of 1e-07, 3 epochs 
with a LR of 3e-08, 3 epochs with a LR of 5e-09, 3 epochs with a LR of 1e-09, 
3 epochs with a LR of 2e-10 and 1 epoch with a LR of 4e-11. This didn’t 
improve the validation loss, but brought the validation accuracy to 94.28%, 
leading to convergence at 93.41% overall test accuracy, as can be seen in 
Fig.3.22 and Table 6. 

 
The total amount of time needed to train the 51 epochs of the proposed 

InceptionV3 model was 38.853 seconds (around 10 hours and 47 minutes). 
 

 
Fig. 3.22. Train and Validation Accuracy (left), Train and Validation Loss (middle) as well as LR 

(right) of the proposed InceptionV3 model. 
 

We trained our ResNet-50 model consisting of 25.583.394 trainable 
parameters with a batch size of 64 on a number of 72.469 train images belonging to 
34 animal classes for 28 epochs in the following training schedule: 

 
1. First, we trained the first 10 epochs with an LR of 0.01. This brought the 

validation loss to 0.36145 and validation accuracy to 89.37%. 
2. Next, we trained for 4 more epochs with an LR of 0.001. This brought the 

validation loss to 0.26349 and validation accuracy to 93.28%. 
3. Next, we trained for 10 more epochs: 3 epochs with an LR of 0.0003 and 7 

epochs with an LR of 8e-05. This brought the validation loss to 0.25335 and 
validation accuracy to 93.62%. 

4. Finally, we trained for 4 more epochs: 3 epochs with a LR of 2e-05 and 1 
epoch with a LR of 3e-06. This didn’t improve the validation loss, but brought 
the validation accuracy to 93.66%, leading to convergence at 93.49% overall 
test accuracy, as can be seen in Fig.3.23 and Table 6. 
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Fig. 3.23. Train and Validation Accuracy (left), Train and Validation Loss (middle) as well as LR 

(right) of the proposed ResNet-50 model. 
 

The total amount of time needed to train the 28 epochs of the proposed 
ResNet-50 model was 21.396 seconds (around 5 hours and 56 minutes). 

We trained our MobileNetV2 model consisting of 6.186.658 trainable 
parameters with a batch size of 64 on a number of 72.469 train images belonging to 
34 animal classes for 51 epochs in the following training schedule: 

1. First, we trained the first 17 epochs with an LR of 0.01. This brought the 
validation loss to 0.46479 and validation accuracy to 88.75%. 

2. Next, we trained for 9 more epochs with an LR of 0.001. This brought the 
validation loss to 0.22574 and validation accuracy to 94.05%. 

3. Next, we trained for 18 more epochs: 4 epochs with a LR of 0.0003, 3 epochs 
with a LR of 8e-05, 5 epochs with a LR of 2e-05, and 6 epochs with a LR of 
3e-06. This brought the validation loss to 0.21380 and validation accuracy to 
94.28%. 

4. Finally, we trained for 7 more epochs: 3 epochs with a LR of 6e-07, 3 epochs 
with a LR of 1e-07, and 1 epoch with a LR of 3e-08. This didn’t improve the 
validation loss and validation accuracy, so we decided to stop the training, 
leading convergence at 94.54% overall test accuracy, as can be seen in 
Fig.3.24 and Table 6. 

 

 
Fig. 3.24. Train and Validation Accuracy (left), Train and Validation Loss (middle) as well as LR 

(right) of the proposed MobileNetV2 model. 
 

The total amount of time needed to train the 51 epochs of the proposed 
MobileNetV2 model was 38.847 seconds (around 10 hours and 47 minutes). 
 
 

3.3.2. Experimental Setup and Results 
 

For the experimental setup and results, our model was trained on a Desktop 
PC system with the following configuration: on the hardware side, we used a Desktop 
PC having an Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz (12-Core), ~3.5GHz 
processor, 32 GB RAM, and an Nvidia GTX 1080 Ti GPU; on the software side, we used 
Windows 10 together with CUDA 9.0, CuDNN 7.6.0 and Tensorflow 1.10 using the 
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Keras 2.2.4 framework. However, for the real-time identification of animal classes 
using the webcam, we use an Asus ROG-GL752VW Laptop with an Intel-Core i7-
6700HQ 2.6GHz CPU having an NVIDIA GeForce GTX 960M GPU with 2GB of memory. 
The experimental results are presented in Table 6 and clearly show that all CNN 
models are able to identify 34 classes representing animals found in domestic areas 
of Europe with high accuracy. 
 

Table 6. Test Accuracy Report for the proposed models. 

Animal 
Class Samples 

Test Accuracy [%] for VGG-19 (V), InceptionV3 
(I), ResNet-50 (R) and MobileNetV2 (M) 

V I R M 

Bat 236 91.6 95.4 90.3 94.9 
Bear 208 88.4 93.8 92.8 92.8 

Canary 130 86.9 92.3 93 93.8 
Cat 279 91.7 94.9 95.3 95.0 

Cattle 552 89.3 91.9 90.2 92.9 
Chicken 402 92.5 93.8 95.8 96.5 

Deer 401 92.8 93.8 94.3 96.0 
Dog 346 85.5 92.8 92.2 93.1 

Donkey 224 75.8 87.6 91.5 90.2 
Duck 329 85.1 85.4 87.8 90.6 
Fox 247 88.3 91.5 93.1 90.3 
Frog 312 92.9 92 93.6 95.8 
Goat 333 81.1 88 88.9 91.9 

Goose 169 86.0 88.9 90.1 92.9 
Hamster 197 88.3 94.9 93.4 95.4 

Hedgehog 192 97.9 99.5 96.9 97.4 
Horse 742 94.7 96.4 93.1 95.8 
Lizard 211 90.0 90.5 92.4 91.9 
Magpie 115 93.0 94.7 93.9 95.7 
Mole 103 93.3 97.1 98.1 97.1 
Owl 256 91.8 95.7 95.3 97.7 

Parrot 307 94.1 96.1 95.4 94.8 
Pig 274 93.1 96 96 97.4 

Pigeon 227 89.9 94.7 94.7 97.8 
Rabbit 285 93.0 94.4 96.2 97.2 
Raven 105 88.8 94.4 94.4 95.2 
Sheep 274 88.6 89.7 92.3 89.8 
Snake 392 95.9 96.4 95.9 95.7 

Sparrow 275 90.2 93.8 94.9 94.5 
Squirrel 139 90.6 92.8 92.8 94.2 
Stork 126 96.8 98.4 99.2 100.0 

Tortoise 123 95.9 91.9 92.6 93.5 
Turkey 141 88.0 94.4 97.2 93.6 

Woodpecker 116 94.9 96.6 97.4 95.7 
Overall Test Accuracy 

[%]: 
90.56 93.41 93.49 94.54 
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In order to show how well our system performs the animal class identification 
task, we also present the Precision, Recall, and F1-Score metrics values in Table 7 
where, for simplicity, because we use the same animal classes and the same number 
of samples in the same order like in Table 6, we don't include here the first two 
columns. 
 
Table 7. Confusion matrix values for the proposed VGG-19 (V), InceptionV3 (I) ResNet-50 (R) 

and MobileNetV2 (M) models. 
Precision Recall F1-Score 

V I R M V I R M V I R M 
0.93 0.96 0.98 0.97 0.92 0.95 0.9 0.95 0.92 0.96 0.94 0.96 
0.9 0.97 0.95 0.95 0.88 0.94 0.93 0.93 0.89 0.95 0.94 0.94 
0.88 0.9 0.89 0.9 0.87 0.92 0.93 0.94 0.88 0.91 0.91 0.92 
0.91 0.95 0.93 0.94 0.92 0.95 0.95 0.95 0.91 0.95 0.94 0.94 
0.88 0.9 0.91 0.91 0.89 0.92 0.9 0.93 0.89 0.91 0.91 0.92 
0.89 0.94 0.98 0.96 0.93 0.94 0.96 0.97 0.91 0.94 0.97 0.96 
0.92 0.94 0.93 0.93 0.93 0.94 0.94 0.96 0.92 0.94 0.94 0.95 
0.88 0.89 0.89 0.88 0.86 0.93 0.92 0.93 0.87 0.91 0.9 0.9 
0.91 0.92 0.86 0.95 0.76 0.88 0.92 0.9 0.83 0.9 0.89 0.92 
0.89 0.9 0.92 0.94 0.85 0.85 0.88 0.91 0.87 0.88 0.9 0.92 
0.93 0.95 0.95 0.97 0.88 0.91 0.93 0.9 0.91 0.93 0.94 0.94 
0.9 0.94 0.96 0.93 0.93 0.92 0.94 0.96 0.92 0.93 0.95 0.94 
0.82 0.87 0.85 0.88 0.81 0.88 0.89 0.92 0.82 0.88 0.87 0.9 
0.84 0.85 0.86 0.9 0.86 0.89 0.9 0.93 0.85 0.87 0.88 0.92 
0.94 0.94 0.98 0.96 0.88 0.95 0.93 0.95 0.91 0.95 0.96 0.96 
0.99 0.98 0.99 0.99 0.98 0.99 0.97 0.97 0.98 0.99 0.98 0.98 
0.87 0.94 0.96 0.95 0.95 0.96 0.93 0.96 0.91 0.95 0.94 0.96 
0.95 0.93 0.92 0.95 0.9 0.91 0.92 0.92 0.92 0.92 0.92 0.93 
0.94 0.95 0.96 0.96 0.93 0.95 0.94 0.96 0.93 0.95 0.95 0.96 
0.9 0.97 0.93 0.97 0.93 0.97 0.98 0.97 0.92 0.97 0.95 0.97 
0.94 0.98 0.96 0.97 0.92 0.96 0.95 0.98 0.93 0.97 0.96 0.97 
0.95 0.95 0.98 0.98 0.94 0.96 0.95 0.95 0.94 0.95 0.97 0.96 
0.93 0.97 0.96 0.97 0.93 0.96 0.96 0.97 0.93 0.97 0.96 0.97 
0.91 0.93 0.94 0.97 0.9 0.95 0.95 0.98 0.9 0.94 0.95 0.97 
0.95 0.95 0.95 0.97 0.93 0.94 0.96 0.97 0.94 0.95 0.95 0.97 
0.89 0.96 0.94 0.93 0.89 0.94 0.94 0.95 0.89 0.95 0.94 0.94 
0.93 0.93 0.92 0.96 0.89 0.9 0.92 0.9 0.91 0.92 0.92 0.93 
0.94 0.93 0.93 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.94 0.96 
0.93 0.94 0.93 0.97 0.9 0.94 0.95 0.95 0.92 0.94 0.94 0.96 
0.83 0.9 0.89 0.92 0.91 0.93 0.93 0.94 0.87 0.91 0.91 0.93 
0.98 0.99 0.96 0.99 0.97 0.98 0.99 1 0.98 0.99 0.98 1 
0.78 0.93 0.9 0.91 0.96 0.92 0.93 0.93 0.86 0.92 0.91 0.92 
0.95 0.98 0.97 0.99 0.88 0.94 0.97 0.94 0.92 0.96 0.97 0.96 
0.97 1 0.98 0.96 0.95 0.97 0.97 0.96 0.96 0.98 0.98 0.96 

 
When compared with some of the existing related works seen in Table 8, our 

solution has some advantages. 
 
Table 8. Comparison between one of our 4 proposed CNN model architectures (MobileNetV2) 

and other related works. 

Model: [87] [88] [84] [86] [85] 
One of our 4 

proposed CNN [89] 
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model 
architectures 
(MobileNetV2) 

Number 
of Animal 
Classes: 

20 20 3 6 50 20 34 24 

Overall 
Test 

Accuracy 
[%]: 

83.33 87.5 88.2 84.39 90.2 91.4 94.5 97.6 

 
One of the main advantages is that the proposed system can identify animal 

classes not only from images but also in real-time from videos or using a webcam. 
The webcam animal class identification is very important because, even though most 
of the videos can be in high-definition, a real-life scenario in which the webcam 
operates can include shadows, dust, fog, and other weather conditions which can 
make the detection and identification task more difficult. Another advantage is that 2 
new datasets are generated in real-time; one dataset containing textual information 
with the class name, date, and time interval when an animal was present in the frame 
and another dataset containing animal images. An example of these datasets is 
presented in Fig.3.25. 
 

 
Fig. 3.25. Example of random animal images and their textual information generated in real-

time by our proposed DL-based system from videos as well as using a webcam. 
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It is important to mention that these images were never seen before by our 

model and that they are automatically generated in real-time from videos or webcam. 
The size of each image generated in this new image dataset is 1280×720 pixels, 
meaning that they can be very easily analyzed by anyone later or used for further 
research, e.g. retraining a much more robust CNN model regarding animal 
classification and identification. Both datasets can be very useful also in the science 
of ecology, e.g. in order to monitor what animals are present the most, between what 
time interval and in which area. Additionally, the proposed solution can be used by 
ecology and biology scientists, veterinary professionals, animal or bird experts, 
farmers, or anyone else who is interested in protecting their own safety or that of 
their domestic animals and crops. 
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4. POWERING A REAL-TIME DEEP LEARNING-
BASED SYSTEM USING SOLAR ENERGY 

 
 

Following we will present three subchapters that will cover the entire 
construction and testing of our dual-axis solar tracking equipment based on the Cast-
Shadow principle that was later also improved and successfully used as part of a self-
sufficient solar-powered real-time DL-based system. 
 
 

4.1. Constructing a Dual-Axis Solar Tracking Device 
using the Cast-Shadow Principle  
 

In a world affected by continuous resource depletion, the need to appeal to 
renewable energy solutions has become more and more justified. The Sun is one of 
the most available sources for harvesting solar energy and can be exploited 
successfully with the help of PV panels. 

Solar tracking systems that rely on the PV effect are constantly expanding, 
even in geographical areas that do not have a lot of sunlight at their maximum level 
over a year period. Because of the affordable price and the existence of highly-
efficient solar cells [166] like the solar modules based on silicon, which deliver more 
than 20% performance, PV panels have become an attractive choice, especially to 
homeowners. The maximum energy output of solar cells with silicon is based on 
current and voltage monitoring. Modifications in current-voltage charts via solar 
module heating or variable intensity illumination may be important causes of 
efficiency loss in solar generators, thus resolute energy cannot be produced when the 
sunlight is constantly changing. In order to conserve energy savings, electronic 
circuits became available on the market, being used for MPPT as well as to prevent 
unproductive temporary modules from interrupting the production of active cells. 
Solar panels have maximum efficiency under ideal conditions: e.g. when the electrical 
power is generated by illumination near the Equator on a serene day as well as when 
a square meter of the Earth’s surface receives more than 1kW of power from the 
energy of the Sun. However, environmental conditions or mismatches of electrical 
characteristics of PV panels can reduce the overall system efficiency. 
 
 

4.1.1. Position Optimization Method 
 

Usually, a full daylight cycle is described by a 150-degree rotation of the Sun 
around the horizon whereas a year period is outlined by a 46 degrees movement of 
the star from the north to the south direction [167]. Static PV panels are physically 
not able to capture the maximum potential of solar energy mainly because of their 
generally fixed 45 degrees installation angle and while the Earth travels around the 
Sun, certain regions of the solar panel become shaded and thus provide a minor or 
no contribution to the power output of the solar system. Taking into account that cells 
act as photodiodes as well as the obvious effect of the dark areas on the panel, we 
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employed a novel tracking mechanism based on the Cast-Shadow principle for which 
we used monocrystalline solar cells. 

Initially, monocrystalline PV cells were placed on a 4 mm thick polycarbonate 
plate. The cells were serially linked, 10 units on each row, so that we obtained two 
groups of 20 photocells which generate 10V. Once tied in a serial manner, the two 
groups of PV cells have been tethered in a parallel connection, resulting in a double 
amount of current produced by just one photocell. In the corners of the solar panel, 
four protective wings were mounted in order to serve as a screen for the PV cells 
placed at the extremities of the payload. As it is depicted in Fig.4.1, we selected a 
group of 3 cells from each corner which later will have the vital role of analyzing the 
light distribution in their respective locations. 

Each of the 40 PV cells is capable of providing a voltage of 0.5V and a power 
output of 0.3W. According to the formula in (4.1), the current value can be effortlessly 
determined. 
 
I = P / V                                                                                                      (4.1) 

 
When irradiated by sunlight, the associated current which traverses a solar 

cell is I=0.6A. Shaded PV cells will drastically reduce energy production if they are 
not effectively managed. Shading less than 3% of the solar panel surface may reduce 
output efficiency by more than 15%, according to US National Renewable Energy 
Laboratory [168]. The efficiency of a solar cell decreases with temperature increase: 
0.15-0.25% / 1 °C for amorphous silicon, 0.35/1 °C for monocrystalline silicon, and 
0.5% / 1 °C for polycrystalline silicon. The temperature of a polycrystalline solar panel 
for instance, during summer, in plain areas reaches easily 50 °C, resulting in a 12.5% 
reduction in power output compared to 25 °C. This reduction in efficiency is important; 
the conclusion is that high amounts of sunlight during summer does not produce the 
maximum current, except in cold areas. We considered this research direction an 
opportunity to investigate how heat generation from the sun rays can alter the 
efficiency of our solar cells. 
 

 
Fig. 4.1. Electrical Connection Scheme for PV modules with the added bypass diodes. 

 
With the help of an infrared thermometer and a multimeter, we measured the 

voltage-temperature relation for monocrystalline solar cells and represented it on the 
diagram in Fig.4.2. 
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Fig. 4.2. Heating Effect on Monocrystalline Solar Cells. 

 
A number of 20 measurements have been carried over a sampling time t = 3 

minutes to establish the average temperature of the solar panel for each data point. 
Starting from an initial value of 11.75V at 38.5° C, considerable voltage drops have 
been monitored until the temperature has reached a peak point of 56 °C where the 
multimeter has registered 10V. According to the degradation coefficient of PV 
modules, the average efficiency loss is 10.85% for monocrystalline, respectively 
15.5% for polycrystalline cells. Due to rising temperatures resulting directly from 
sunrays, overheating issues affect unavoidably the solar cells by causing continuous 
voltage drops. Consequently, future investment in a hybrid PV system given by the 
combination of a solar panel and a water-cooling mechanism could prove favorable in 
enhancing the performance of PV cells by almost 50% [169]. 

However, in the absence of any cooling solutions, shaded or defective cells 
are circumvented by the current of illuminated solar cells. To avoid overheating issues 
and ensure that PV modules operate reliably, bypass diodes, denoted with D2 earlier 
in Fig.4.1, can be supplemented. The function of this diode is to protect PV cells if the 
light on the surface of a module is not uniform. On the other hand, the blocking 
diodes, indicated with D1, are responsible for protecting each PV cell string of reverse 
current from other PV cell strings located on the solar panel, usually caused by shading 
on only one row of PV cells. Bypass diodes are typically placed on sub-strings of 20 
PV cells. Since the PV cells are connected in series, power differences cause also 
voltage differences. If the conduction of high current is initiated by a shadowed cell, 
its voltage is actually negative. Instead of producing energy, this solar cell will only 
consume it, thus becoming a reverse polarized diode that dissipates power and which 
will cause itself to heat up. If the area, the structure, and the environmental conditions 
do not allow proper heat dissipation, a critical power point is reached called hot-spot, 
which interrupts the row of solar cells. The exact point at which a PV cell becomes a 
consumer instead of being an energy producer differs by types of cells and diodes. 
Despite successfully fulfilling the PV cell protection function, bypass diodes are not 
effective in reducing temperature increases in PV cells. 
 
 

4.1.2. Performance Evaluation of Electrical Equipment 
 



POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 81

With reference to commercial solar panels, the key component that ensures 
efficiency is the inverter that generates power compatible with the AC power grid. For 
the case of solar panel networks, inverters are complex systems, which normally have 
three functions: DC / DC conversion, DC / AC conversion, and Anti-Island control. The 
inverter must be adjusted to the changing conditions in the solar cell matrix. This is 
generally done using the MPPT algorithm, in other words, maintaining the product 
voltage × the current at maximum values. Using MPPT, inverter circuits can use the 
optimal combination of voltage and current, delivering power to a load in an effective 
way. In this perspective, our new Cast-Shadow concept helps to maintain the solar 
panel perpendicular to the Sun streams without using the MPPT method. 

The solar tracking device, as seen in Fig.4.3, is materialized from an Arduino 
UNO board, two Stepper motors, a pair of specialized L298N circuits, and an 
Optocoupler, which will be further detailed in this section. 
 

 
Fig. 4.3. Schematic Overview of the Solar Tracking System. 

 
In order to achieve a low-cost solution, we aimed for the Arduino UNO, a 

development board based on the architecture of the Atmega328 microcontroller. Also, 
in order to design a mobile variant of a solar panel, we made use of 4 analog inputs 
(A1-A4) for collecting sensor information from the solar cells, 8 digital outputs (D4-
D11) for commanding sequentially the Dual H-Bridges, 4 digital pins, from which 2 of 
them (D2-D3) were assigned as inputs for the upper and lower switch and the other 
pair (D12-D13) for a blocking circuit to reduce the power consumption of the Stepper 
motors. 

The Arduino microcontroller can be powered in two ways, either via a USB 
connection from the computer or via a battery to which the positive terminal will be 
connected to the Vin input and the minus terminal will be linked to the ground. The 
board was designed to operate between 6V and 20V, but the recommended voltage 
range is between 7-12V. In our automation project, the Arduino UNO drains 350mA 
during standby phases and 380mA while sending commands to the output circuits, 
resulting in average power consumption of 0.15 Watt-hour (Wh)/day. 
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Stepper motors are brushless DC electric motors capable of divaricating a 
360-degree rotation into a number of identical steps. In our work, we used a unipolar 
EM-61 23LM-C352 stepper motor for horizontal operation and a bipolar 103G771-
0240 stepper motor for executing vertical movements, recycled from old printer 
models. The unipolar motor differs from the bipolar model by having a common center 
tap per phase, which will be linked to the positive valence of the H-Bridge circuit. In 
most cases, given one phase, the central tap for each winding has the following 
arrangement: 3× phase-conductors and 6× conductors for a regular two-phase 
stepper motor. These types of stepper motors offer a cheap solution for precise 
angular movements. Bipolar stepper motors, on the other hand, have only one 
winding per phase. Generally, Dual H-bridges are the circuits of choice to change the 
current in the winding, which in turn reverts the magnetic pole causing the stepper 
motor to move in one direction or another. Further technical information for both 
stepper motors can be seen in Table 9. 

In many of the studied related works, stepper motors are not the primary 
engine of choice in order to move the solar panel in different directions. This is mainly 
because other actuators such as DC motors can fulfill the same task for less power 
consumption [170]. We followed this premise and carried out a series of 
measurements on our stepper motors. In order to establish the current drain for just 
one stepper motor, we disconnected the vertical motor from the solar panel 
installation. 

 
Table 9. Technical Data for Stepper Motors. 

Parameter Horizontal Stepper 
Value 

Vertical Stepper 
Value 

Nominal Voltage 4 V 1.53 V 
Current Intensity 1.5 A 3 A 

Resistance 3 Ω 1 Ω 
No. of terminals 6 4 

No. of steps/revolution 200 200 

Weight 450 g 552 g 

Angular resolution 1.8 ° 1.8 ° 

 
After careful measurements, we determined that a maximum value of 3A was 

drained in the standby phase while the stepper motor is resting and keeps the solar 
panel tightly fixed at the given position. At this point, we could only reduce the supply 
voltage to 4V to obtain 2A while the stepper remained fully functional. The average 
current of 1.5A is only visible during its duty cycle, therefore steppers consume less 
current when they rotate the panel in a certain direction. Consequently, the used 
stepper motors have a much higher power specification of 5W compared to DC motors 
with the 2.4W power rating, which results in an overall efficiency decrease of the 
employed system. Despite this fact, we managed to cover these disadvantages by 
improving both engine accuracy and energy consumption. 

First of all, as can be seen in Fig.4.4, we constructed a gear train by fixing 
gears on a frame so that the teeth of the wheels interact with each other. 
 



POWERING A REAL-TIME DEEP LEARNING-BASED SYSTEM USING SOLAR ENERGY 83

 
Fig. 4.4. Mechanical System of PV Panel with enhanced Stepper Motors. 

 
The mechanical advantage for a gear wheel is often defined as the ratio of the 

number of driving gear teeth divided by the number of driven gear teeth (load). That 
means the gear ratio known also as speed ratio is inversely proportional to the pitch 
circle radius and the input gear’s number of teeth. In mathematical language the 
formula can be written as in (4.2): 
 
R = Nb / Na                                                                                                 (4.2)                                  
 
where Nb represents the number of teeth of the input cogwheel and Na signifies the 
number of teeth from the output gear. 

According to Table 9 seen earlier, both stepper motors have a standard 
angular resolution of 1.8 degrees/step. We counted the number of teeth for the larger 
and smaller-sized cogwheel and obtained Na=85, respectively Nb=21. By using the 
above formula in (2), the resulted mechanical advantage was R=1/4, which led us to 
an improved angular resolution of 1.8/4=0.45 degrees/step. In respect to the vertical 
motor, by applying the same mathematical relation for the values Na=85, Nb=25 we 
obtained R=1/3.4, thus resulting in a new angular resolution of 1.8/3.4=0.52 
degrees/step. 

Secondly, our Stepper motors are improved to rest outside of their duty cycle, 
hence remaining competitive in terms of reliability and power consumption. Steppers 
are known for two major drawbacks: the lack of position feedback and high energy 
drain during stationary periods. To compensate for these disadvantages, as seen in 
Fig.4.4, we added four extra elements to the mechanical structure of the solar panel: 
two switches (denoted with LS) and a pair of blocking elements (denoted with B). The 
upper switch which engages with the vertical motor has the role to restrict the 
elevation movements, while the lower switch restrains the azimuth rotations of the 
horizontal motor. The lower switch also initiates the rotating command of the solar 
panel in the original state it was in. From the electric diagram presented earlier in 
Fig.4.3, we can see that the circuit is equipped with two resistors with a value of 1kΩ. 
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If one of the two inputs (D2 and D3 from Fig.4.4) activates one limiter, its value will 
change to HIGH (under-voltage) and thus will stop one of the two-axis movements. 
If none of the limiters are validated, the two inputs will have the value LOW, both 
being linked in this case to the ground point.  

To initiate the braking on the toothed wheels of the stepper motors, a circuit 
consisting of two resistors, two transistors, and two coils was used. While the 1kΩ 
resistors are intended to limit the current to the transistors whenever a voltage is 
applied, the electric junction opens, thus activating the coil which will release the 
locking element on the cogwheel. In the opposite scenario, when the coil is not under 
voltage, the stepper motor will be deactivated with the digital.Write() function of the 
Arduino, which implements LOW values on all inputs of the Dual-H bridge driver. In 
this manner, the stepper motor will maintain its current position due to the blocking 
element feature and will not consume any power during the stationary regime. 
 The two stepper motors are driven by the L298N circuits by sequentially 
commanding the diagonal of the two bridges. This type of circuit encompasses a 
double bridge of transistors, of which a bridge feeds a motor winding and the other 
bridge, the second winding. The Dual-H Bridge is provided with Schottky diode 
outputs, designed to protect the IC from the auto-inductive voltages that can occur 
at engine windings. The role of the onboard capacitors is for additional filtering of 
voltages. When we measured the current draw from the L298N board, we obtained 
400mA during standby phases and a maximum of 450mA while transmitting impulses 
to the stepper motors. The overall power consumption of these components is rated 
at 0.17Wh/day. 
 Regarding the Optocoupler, the IC is called LTV 847 and has in its structure a 
number of 4 Optocouplers, which in turn are made up of 2 components: a Light 
Emitting Diode (LED) with the opening voltage of 1.2V and a phototransistor that 
opens when it receives light from its corresponding LED. The role of the Optocoupler 
is to galvanically isolate the input source from the output source. The collected 
voltages from the 4 corner groups of PV cells don’t have a common connection point, 
therefore we resorted to the Optocoupler. This is because we were able to connect all 
4 resistors of the phototransistors to the ground point of the PCB. According to 
measurements, each of these 4 groups has a current consumption of 0.6mA. 
Therefore, the Optocoupler that is connected to the selected array of cells shows 
negligible power consumption, more exactly 0.95 mW, compared to the total power 
discharged by the solar panel. 
 The average current that is drained by the Optocoupler inputs is equal to 
0.5mA as shown in Table 10, resulting in average power consumption of 0.02W, while 
the outputs, which are rated at 2.2mA develop an average energy drain of 0.088W. 
 

Table 10. Optocoupler – Arduino Pin Connections. 

No. Crt. 
Optocoupler - Arduino – Connections and Values 

Inputs Measured values 
[V] 

Outputs Measured values 
[V] 

1 A1-K1 0.567 A1 1.506 
2 A2-K2 0.568 A2 1.332 
3 A3-K3 0.561 A3 1.510 
4 A4-K4 0.550 A4 1.384 

 
To limit the current through the diodes, 1kΩ resistors have been mounted at 

the input of the Optocoupler. In order to adjust the voltage values that are sent to 
the analog inputs of the Arduino (A1-A4), variable resistors have been fixed in the 
output circuit of the LTV 847. 
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In respect to the Fig.4.5, we can distinguish a high power drain range of 4.55 
– 9.40W for active stepper motors during the entire day, and relatively low power 
consumption, between 0.22 and 2.39W for inactive steppers. 
 

 
Fig. 4.5. System Power Consumption of the Solar Tracking Device. 

 
In other words, the solar tracking device consumes an average of 7.50 

Wh/day when the stepper motors are under voltage and 0.98W when the stepper 
motors are turned off between exact hour times. In this manner, we were able to 
decrease the global power consumption of the portable solar panel by 86.93% per 
day. This reduction in energy consumption was only possible by mounting an 
additional 2.4Ω close to the Vin of the L298N Dual-H bridge and based on the careful 
observation that the solar tracker only needs to update its position every hour per 
day. While there may be gaps between the data points of the graph, usually electrical 
components maintain a standby phase power consumption, as it is depicted in Fig.4.6. 
 

 
Fig. 4.6. Solar System Standby Power Consumption between Hour Times. 

 
In this scenario, experiments have been carried out over an hour time with a 

5 minutes space between each measurement to demonstrate that deactivating both 
stepper motors can drastically reduce the power consumption. In combination with 
the braking method, steppers have to be programmed adequately to be under voltage 
before the blocking element releases the cogwheel. This is an important aspect of the 
approach because we avoid any risk of losing the current position of the Stepper. 
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4.1.3. Algorithm Testing 
 

The software code we developed on the Arduino platform eliminates the 
requirement of sophisticated mathematical approaches presented in [92] where the 
authors rely on geometrical formulas to calculate the theoretical altitude and azimuth 
angles of the Sun’s position. A simplified model of the pseudocode which was the basis 
for the implemented automation program can be visualized in Fig.4.7. 

 

 
Fig. 4.7. Logical Flowchart for PV Panel Algorithm. 

 
 In order to gain a better understanding of the working principle, each solar 
cell group from the 4 corners will be designated as TR (Top Right), TL (Top Left), BR 
(Bottom Right), and BL (Bottom Left) in linkage with their locations. We will also 
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consider the average voltages for each side as AVR (Average Voltage Right), AVL 
(Average Voltage Left), AVT (Average Voltage Top), and AVD (Average Voltage 
Down), while the total average value will be denoted as TAV. 

 The solar tracker will generally have an initial eastward position before the 
algorithm enters its normal routine. After the sun rises, incoming voltage values 
received from the Optocoupler will be temporarily stored in newly declared variables 
that require additional in-program calibration. At this point, with the support of 
formulas from the math.h library of the Arduino IDE, average values will be calculated 
for all sides of the solar panel. Although it is not mentioned, before the algorithm 
checks each if condition to rotate the solar panel in the correct direction, it usually 
verifies if the total average voltage of the 4 corners is equal or less than a predefined 
number (for instance 8) and it also checks if the limit switches have the required 
range. This process is repeated for both stepper motors and guarantees that analog 
readings are always up-to-date. The direction in which the solar panel moves is 
generally determined by the presence of shadow on one of the pairs of cell groups. 
Whenever the algorithm detects a major difference between voltage averages, it will 
rotate the panel towards the direction of the shaded area. At the end of the day, when 
all voltages on the 4 corners become null, the solar tracker will drive the engine 
horizontally to its initial position waiting for the Sun to rise once again the next 
morning. However, altered values that may be delivered to the Arduino 
microcontroller can modify the paths of the algorithm and by default disrupt the 
orientation of the PV panel. In such circumstances, an error handling software is an 
appropriate solution for preventing communication and calculation errors to appear in 
the system. 

A White-box testing strategy, which we developed in [18] counteracts the 
intrusive behavior of these common types of software errors by injecting random 
values that simulate gathered voltage readings from each group of 3 solar cells. The 
designed testing algorithm implements different testing techniques to evaluate the 
software functionality and features. Each part of the code will be tackled individually 
and we attempt to show all the possible breakpoints as well as try to detect possible 
fault errors using White-box testing techniques. The testing is based on the AUnit 
[171] Arduino library which is a port of ArduinoUnit and Google Test programs. 

The White-box testing routine will follow the program structure of the 
algorithm under test as seen in Fig.4.8 and will implement a set of continuous tests 
to check regularly on error handling errors. From this perspective, the algorithm will 
require the user to choose the desired testing path. If the device is set in Field mode 
we can read control data received from analog sensors. In the opposite case, Test 
mode, we will only be able to receive control instructions from our Message Queuing 
Telemetry Transport (MQTT) server [172]. This selection process is mainly necessary 
in order to ensure that the data being used to control the stepper motors is solely 
from one source. From here, the testing algorithm will fetch the incoming injected 
inputs from an ESP8266 Wi-Fi module which sends data wirelessly, and further 
proceeds with the calibration of the volatile entries. The first test that will run in a 
continuous loop will verify each of the analog sensor readings in order to make sure 
that they are within the specified range. Usually, large data packages, which are a 
source of calculation errors, can be detected successfully by the test program and 
isolated for further analysis. 
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Fig. 4.8. Logical Flowchart of Algorithm based on the White-box testing approach. 

 
Although the values for the initial speed of the stepper motors are hard-coded 

and there is little room for errors, in a setup where those values are selected 
dynamically, they can cause an increased number of steps which leads to improper 
displacement of the solar tracker. In some cases, serial communication may not start 
fast enough. This will lead to data corruption and communication errors whenever we 
are trying to receive or send data to the server. A continuous scan on serial 
communication may warn the user if the connection to the server has failed. 

There is also the possibility of declaring a long variable that holds the last 
time we sent analog data to the server. We can use this variable to control the 
frequency of data transmission to the server. Sending data continuously can lead to 
over tasking while the server script that processed the received data can also cause 
framing errors in the Serial Communication. In any other case, a last possible 
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breakpoint in the program is given by the function which receives data from the ESP 
device. When using Serial Communication at higher speeds we have to run a test that 
will ensure that the received values are valid integers and we can also check for the 
length of the received data, since we are expecting a specific number of characters 
from the ESP. 
 
 

4.1.4. Experimental Results Regarding Position Optimization 
 

The efficiency of solar energy conversion is the percentage of solar energy 
that is converted into electricity. This is calculated by the ratio between the maximum 
power (Pm - Maximum Power in W) at the outlet and the input light (E, in W / m2) 
and the solar cell surface (Ac, in m2) as seen in formula (4.3):  
 
E = Pm / (E × Ac)                                                                                        (4.3) 
 

By convention, the efficiency of a solar cell is measured under standard test 
conditions (STC), i.e. at a temperature of 25 °C and an irradiance of 1000W / m2 with 
an air mass AM 1.5 spectra [173], which defines the solar radiation that traversed the 
atmosphere. These conditions correspond to a sunny day with sunlight on a 37 ° 
inclined surface facing the sun and when the sun is at an angle of 41.81 ° above the 
horizon. This is equivalent to sunlight at noon close to spring and autumn equinoxes 
in the continental area of the United States [174], with the surface of the cell directly 
targeted by the sun. Under these test conditions, a solar cell with an efficiency of 20% 
and a surface area of 100 cm2 (0.01 m2) would produce a power of 2W. 

While our measurements for power consumption were made in August 2018 
and the power generation of the solar panel was overlapping between 12:00 PM and 
15:00 PM, in order to save energy, we decided to temporarily switch-off the solar 
tracking device. However, September 2018 was the auspicious month for us because 
air temperature would drop down to 25-28 °C and solar irradiance would be much 
closer to standard values. Measurements were focused mainly on voltage, current, 
and power monitoring during a full-day cycle, with a clear atmosphere and an average 
temperature of 27° C. 

The last 6 columns from Table 11 illustrate the voltage and current values 
registered by the multifunction tester in the following order: VSP (Voltage Static 
Panel), VAP (Voltage Automated Panel), VSPC (Voltage Static Panel with Consumer), 
VAPC (Voltage Automated Panel with Consumer), CSP (Current Static Panel with 
Consumer) and CAP (Current Automated Panel with Consumer). 
 The columns regarding VSP and VAP from the Table 11 are not pertinent for 
the efficiency of the solar tracking device as the average open-circuit voltage increase 
is located between 8.5% - 9% or above, depending on the environmental conditions. 
However, after we mounted a 10Ω resistor in the output circuit to serve as an energy 
consumer we could determine the following parameters: VSPC, VAPC, CSP, and CAP. 
 According to the collected values, the solar panel generated an average of 
5.35 Wh/day in a static position and 8.22 Wh/day while it was tracking the Sun’s 
trajectory resulting in a 53.64% power increase/day. To demonstrate the relevance 
of our experimental research we continued the measurements for another 6 days to 
reach a full week. 
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Table 11. Voltage and Current Monitoring for Static and Automated PV Panel. 

Time 
(Hour) 

VSP 
[V] 

VAP 
[V] 

VSPC 
[V] 

VAPC 
[V] 

CSP 
[A] 

CAP 
[A] 

8:00 9.30 11.50 2.00 7.20 0.130 0.835 

9:00 10.80 11.60 4.74 8.58 0.497 0.998 

10:00 11.12 11.80 6.12 9.15 0.785 1.107 

11:00 11.15 11.77 8.35 9.80 0.940 1.090 

12:00 11.33 11.70 9.05 9.23 1.065 1.190 
13:00 11.46 11.75 8.82 9.31 1.076 1.190 
14:00 11.40 11.68 8.63 9.10 0.880 0.918 

15:00 11.15 11.45 8.31 9.00 0.830 0.910 

16:00 10.67 11.38 8.23 8.70 0.780 0.890 

17:00 10.54 11.10 6.60 8.10 0.650 0.830 

18:00 10.20 10.84 5.27 7.38 0.580 0.740 
19:00 7.35 10.10 4.30 6.95 0.360 0.680 

 
 As can be seen in Table 12, the third day was the most productive in terms 
of generating voltage, current, and power for our energy production. We mention that 
the Power of the Static panel with Consumer (PSC) and the Power of the Automated 
panel with Consumer (PAC) were subsequently calculated. 
 
Table 12. Voltage, Current, and Power Monitoring for Static and Automated PV Panel (over one 

week). 
Test 
Schedule 

VSPC 
[V] 

VAPC 
[V] 

CSP 
[A] 

CAP 
[A] 

PSC 
[W] 

PAC 
[W] 

Day 1 5.93 7.97 0.561 0.746 3.32 5.94 
Day 2 6.41 8.70 0.578 0.824 3.70 7.16 
Day 3 6.70 8.54 0.714 0.948 4.78 8.09 
Day 4 6.63 8.55 0.649 0.875 4.30 7.48 
Day 5 4.66 7.72 0.479 0.834 2.32 6.43 
Day 6 4.26 7.88 0.493 0.845 2.10 6.65 
Day 7 4.45 7.55 0.552 0.895 2.45 6.75 

 
 With reference to Fig.4.9, the performance gain of our solar tracking solution 

covers voltage, with an average of 45.77%, current, with a mean value of 48.21%, 
and lastly 53.62% more power generation compared to the fixed-tilted solar panel 
during one week period. 

A summarized analysis regarding system power consumption and energy 
gains of our proposed dual-axis solar tracking device based on the Cast-Shadow 
principle versus state-of-the-art automated PV panels is illustrated in Table 13. We 
present a comparison with other related works regarding the Wh/day consumption 
before (red color) and after (orange color) optimization as well as the daily and 
monthly energy improvements given by current (blue color), voltage (violet color), 
and power (green color). According to the experimental data from Table 13, our 
proposed solar tracking solution based on the Cast-Shadow principle outperforms the 
works in [92-95, 170, 175, 176, 178] with regard to the power increase, the work in 
[91] regarding the overall voltage increase as well as the work in [90] for all targeted 
energy areas. 
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Fig. 4.9. Voltage, Current, and Power Gain of Automated Panel (red color) over Static Variant 

(blue color). 
 

Additionally, it is important to mention that our solution outperforms also the 
work in [177] regarding power gains for the dual-axis implementation, but due to the 
multidirectional approach, their solution is more efficient. 
 

Table 13. Energy Gain Analysis for Solar Tracking Devices. 

No. 
Crt. 

System 
Components 

System Power 
Consumption 

(Wh/day) per Day 
[D] 

System Energy Gains (%) per Day 
[D] and Month [M] 

Curr
ent 

Volta
ge Power 

[17] 

Arduino UNO 
+ 

Optocoupler 
+ L298N + 
Steppers 

(Unipolar+Bip
olar) 

Before 
Optimizati

on 

After 
Optimi
zation 48,21 

[D] 
45,77 
[D] 53,62 [D] 

9 [D] 2 [D] 

[92] 

PC + Central 
Processing 
Module + 
Sensor 

Modules + 
Motor Driver 

circuits 

Normal 
Tracking 

Daily 
Adjust
ment 

Not specified 

Normal 
Tracking 

Daily 
Adjust
ment 

<= 52,8 
[D] 

<= 1,2 
[D] 

>= 23,6 
[D] 

>= 
31,8 
[D] 

[94] 

Arduino UNO 
+ LDR’s + 

Motor Drivers 
+ Servo 
Motors 

Not specified 

53,35 
[D] 

Not 
specif
ied 

52,69 [D] 

[170] 

Arduino UNO 
Microcontrolle

r + 
Servomotors 

+ LDR’s 

Not specified 13,44 [D] 

[91] 

Arduino UNO 
+ 

Servomotors 
+ LDR’s + SD 

card + 
Battery 

Not 
specif
ied 

36,30 
[D] 

Not specified 

[93] 

Atmega328P 
+ LDR’s + 

Servomotors 
+ Panel 
Carrier 

Not specified 42,81 [D] 
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[90] 
Arduino UNO 
+ LDR’s + DC 

motors 

16,59 
[D] 

40,66 
[D] 

35 [D] 

[95] 

MC68HC11A8 
+ INA168 + 

OPTO-DIAC + 
AMIS -30543 
Motor Drivers 
+ NEMA 23 
Steppers 

Spring 33,6 [M] 
Summer 43,6 [M] 
Autumn 38,3 [M] 

Winter 28,8 [M] 

[175] 

MATLAB 
Simulation of 

Solar 
Tracking 

Design Model 

Not specified 

33,37 % [D] 

[176] 

Solar Panel + 
LDR Sensors 
+ DC motors 
+ H-Bridges 
+ Regulator 

~ 4,07 [D] >= 24,78 % [D] 

[177] 

Sensor Matrix 
Array + Dual 
Comparator 
+ Inverter + 
Microcontrolle

r + Driver 
Circuit + 
Stepper 
Motors + 

Monocrystalli
ne Solar cells 

Not specified 

Dual 
Axis 
Solar 

Tracker 

32,34 % 
[D] 

Multidire
ctional 
Solar 

Tracker 

63,96 % 
[D] 

[178] 

Klipp & 
Zonen 

Pyrheliometer 
+ NI My RIO 

+ MEMS 
dual-axis tilt 
sensor + DC 
motor Driver 

+ Linear 
motors for 

altitude and 
azimuth 

28 % [D] 

 
A more critical discussion between the works is difficult to achieve due to the 

following facts: a) each solar tracker is unique in regards to the system components 
that can be mechanical parts (cogwheels dimensions, gearbox arrangement) which 
influence the precision of the device, as well as electrical components (ranging from 
microcontrollers, FPGA’s, ASICS to more complex systems such as CPU architectures) 
that determine the accuracy and speed of the implemented algorithms; b) many of 
the recent works primarily focus on the energy efficiency without mentioning the 
power consumption of the implemented devices. The effect of tracking on the PV 
performance can be measured by analyzing the energy produced by the fixed and 
automated panel as well as the energy consumption necessary for the tracking; c) 
the tracking strategies do not hold the highest impact over power generation. A more 
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critical factor is the quality of the used PV cells, as certain categories are rated to 
provide more energy efficiency. In our case, we focused on constructing a low-cost 
solar tracking device. Future investment in more professional equipment may lead to 
even greater performance. 
 
 

4.2. Software and Hardware Testing of a Dual-Axis 
Solar Tracking Device  
 

Having described the construction of the dual-axis solar tracking equipment, 
this subchapter focuses on presenting software and hardware testing methods 
applied to it. Despite there being, to the best of our knowledge, no software or 
hardware testing methods applied to a solar tracking equipment before in the 
literature, the detection of possible software or hardware errors present during its 
operation was very important because: a) we later use the dual-axis solar tracker in 
order to power a real-time DL-based system, as will be detailed later in the next 
subchapter of this Ph.D. thesis and b) we anticipate an increase in the availability as 
well as in the importance of solar tracking systems in the near future (e.g. when 
powering DL-based systems). 
 
 

4.2.1. White-Box Testing Applied to our Dual-Axis Solar 
Tracker 
 

With entry into the digital age, the need to use software testing strategies for 
devices from the renewable energy field has become equally important as hardware 
testing facilities. In order to obtain maximum coverage of possible occurring defects, 
it is required to evaluate the functionality of the software code that runs on a digital 
device. As mentioned earlier, solar tracking devices are programmed PV panels which 
are able to direct the payload towards the Sun for optimal solar radiation exposure 
and automated PV panels appear in two forms: single-axis and dual-axis solar tracking 
devices [179], the second form being more advantageous from the accuracy point of 
view. However, the complexity of the algorithm which commands the direction of the 
Sun tracking device grants accesses to intrusive errors that can hinder maximum solar 
energy gathering, thus affecting the overall efficiency of the solar installation. 
Therefore, software-testing strategies are a feasible and low-cost solution to this 
problem, allowing the programmer to design test cases for the written code and verify 
it’s functionality in more critical scenarios. Testing of software and hardware solutions 
are in high demand, as the need for highly secure applications and systems is 
increasing. Being the most challenging and dominating activity in the industry, the 
purpose of testing is to provide quality assurance, verification, and validation, in order 
to ensure software quality. White-box testing [180], [181], contrary to the Black-box 
testing which relies on testing from an external or end-user type perspective, involves 
the testing of internal coding and infrastructure of a software application by focusing 
mainly on strengthening the security and the flow of inputs and outputs through it, 
resulting in an improved design and usability of the AUT. White-box testing requires 
the tester to have very good knowledge of the programming language in which the 
AUT was written on as well as knowledge of how the system is implemented. This 
helps in minimizing the costs by reducing testing time and also to minimize the errors. 
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Our White-box testing strategy covers multiple types of errors that can occur 
on the control board, which is implemented using an Arduino Uno, as well as to the 
components around it. Here, we can distinguish four main aspects of the testing 
phases: first, we are injecting virtual random integer values to capture analog faults 
of the solar tracking equipment; secondly, we are gaining direct control of the stepper 
motors to receive feedback analog readings from each of them; third, we are using 
the White-box testing strategy to verify the internal structure of the ATmega328 
microcontroller on the Arduino UNO, with regard to memory errors and buffer 
overflows. As it is depicted in Fig.4.10, the secondary microcontroller, which is called 
ESP8266, serves as a middleman between the Arduino Uno platform and the Cloud 
setup because the DUT lacks inbuilt Wi-Fi capabilities. 
 

 
Fig. 4.10. Overview of our Implemented System and White-Box Testing Equipment for a Solar 

Tracker Device. 
 

The Cloud Server implementation is based on an MQTT [172] broker, which 
together with the Node-RED [182] interface, is able to test the input and output values 
flow. We are applying White-box testing in order to analyze the program structure 
and attempt to find any bugs or programming errors. Some of the common errors 
encountered during software programming of our solar tracking device include 
functionality errors, communication faults, syntax errors, error handling defects, 
control flow errors, and calculation errors. In this direction, we minimized the use of 
buffers and arrays and instead opted to use individual objects to reduce memory 
fragmentation and avoid buffer overflow errors. We have also minimized the use of 
strings, which are notorious [183] for bad memory management on the Arduino 
platform. The Arduino bootloader checks the firmware while it is being uploaded using 
checksums for each data segment uploaded, thus eliminating or minimizing the 
possibility of flash errors. Flash errors are detected while uploading and as a result, 
the user is prompted to attempt the upload process again. We have also implemented 
a functionality that enables the Arduino microcontroller to report live analog values 
from the solar PV cells to the MQTT broker. This data gives the user real-time feedback 
on the results regarding the movement of the stepper motors and it can be gathered 
by the end-user for storage visualization or further analysis. 
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4.2.2. White-Box Testing System Overview 
 

Regarding the hardware implementation on which White-Box testing is 
applied, the main control board for the project is the Arduino Uno, which controls the 
position of the solar panel using stepper motors. It reads analog voltage values from 
the solar panel and is able to detect which direction the Sun is moving in by calculating 
the corner of the solar panel that is producing the highest amount of electricity. This 
system works autonomously, but, in order to test all the possible conditions, we had 
to implement another system because we could not test the device effectively using 
only the Sun's movement which is very slow and does not vary enough over short 
periods of time. For this, we introduced a secondary microcontroller called NodeMCU 
ESP 12, which imitates the sensor values read from the solar panel. Using the 
NodeMCU ESP 12, we can vary the sensor values within a given range and observe 
the movement of the solar tracking device. This microcontroller is linked to a web 
interface and an app, from which, simulated sensor values can be easily sent, enabling 
us to achieve fast development and test cycles. NodeMCU ESP 12 is a well-known Wi-
Fi enabled microcontroller. Its main function is to serve as a middleman between the 
Arduino Uno and the Internet because the Arduino Uno lacks inbuilt Wi-Fi capabilities. 
We have chosen NodeMCU ESP 12 because it is readily available and also compatible 
with our already existing Arduino microcontroller (ideally it can act as both the main 
and secondary microcontroller, eliminating the need for the Arduino Uno in future 
iterations of this work). Data and control in our setup flow from the user (Web 
Interface/App) to the Secondary microcontroller using the MQTT protocol [172]. The 
NodeMCU ESP 12 receives data from the web interface through the MQTT, processes 
this data, and sends it to the Arduino for execution. It communicates with the Arduino 
over serial communication and a Universal Asynchronous Receiver Transmitter 
(UART), which is a convenient choice for short distances and high-speed 
communications. 

MQTT is a machine-to-machine (M2M)/“IoT” lightweight transport protocol 
that is using the network bandwidth in an efficient way (with a 2 byte fixed header), 
assuring the delivery of the message from the nodes to the server. It was introduced 
by IBM in the year 1999 and recently standardized by the Organization for the 
Advancement of Structured Information Standards (OASIS) [184]. Because it is a 
message-oriented information exchange protocol based on publish/subscribe, the 
connections usually involve two types of agents: an MQTT client and an MQTT server, 
also known as a public broker. An MQTT client is considered to be any device (e.g. 
sensors, mobiles) that exchange application messages through the MQTT and can be 
either publisher (publishes application messages) or subscriber (requests for the 
application messages), both of them being isolated (they do not have to be aware of 
each other's existence or application). The public broker (Server), being a device or 
program that interconnects the MQTT clients, it accepts and transmits this application 
messages between them, being responsible for collecting and organizing the data. 
MQTT is designed with all complexities in mind to simplify a client’s implementation. 

For the web interface, we have implemented the Node-RED [182] IoT 
platform, which is specially tailored towards IoT and embedded systems applications. 
It is built on Node.js and has support for integrating numerous hardware devices, 
APIs, and online services. We chose Node-RED because it has inbuilt support for our 
MQTT protocol, it is lightweight and easy to implement, and because it provides a 
convenient data flow editor. The Node-RED Flow is configured to send MQTT messages 
to our NodeMCU ESP 12 on a specified topic. The values to be sent are controlled by 
sliders, as can be seen in Fig.4.11. It has also been configured to receive a 
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confirmation message from the NodeMCU ESP 12 once the command has been 
executed. 

The mobile application was developed using the Ionic Framework, which is a 
framework that enables hybrid app development, meaning one can build apps for 
Android, iOS, and Windows devices using the same code platform. Our app is a 
wrapper around the Node-RED and acts as a browser, providing us access to the 
Node-RED Dashboard. We developed our mobile application in two versions: an iOS 
app as well as an Android app. 
 

 
Fig. 4.11. GUI for controlling our Solar Panel. 

 
A pivotal part of the project is the Cloud Server, which has a variety of 

functions. It functions as the MQTT broker, which means it handles the communication 
between different clients on the MQTT network and it also acts as the host for our 
Node-RED flow (we start the MQTT broker, followed by the import of the MQTT flows). 
The MQTT server was configured by installing Mosquitto, an open-source message 
broker for MQTT that uses a publish and subscribe model in order to be able to test 
the input and output values flow. Important to notice here is that Node-RED has both 
publish (mqtt out) and subscribe (mqtt in) nodes. Arduino IDE, a C++ type language, 
is used to program the nodes. 
 
 

4.2.3. Wireless-Based Software Technique 
 

In this section, we focus on the logical diagram description derived from the 
White-box software code and the testing environment, which represents the 
interaction between the Cloud Server Layer and Software Layer, illustrated in 
Fig.4.12. The White-box testing algorithm includes the main program functions as 
well as custom implemented testing functions. 

Regarding the main program functions, our WBST approach is making use of 
the Node-RED interface, which can be seen as a group of nodes through which data 
flows. These nodes can modify, display, or send data depending on their type. 
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Fig. 4.12. The flow of Data and Control. 

 
The first 4 nodes in Fig.4.13, Left-Top (LT) Sensor, Right-Top (RT) 

Sensor, Left-Down (LD) Sensor, and Right-Down (RD) Sensor are input nodes. 
They are sliders that allow the user to input the value to be sent to the microcontroller 
in order to test the cases in which the solar tracking device might engage in a failure. 
 

 
Fig. 4.13. Group of Nodes in the Node-RED Interface for our Solar Tracking Device. 

 
The function nodes func1, func2, func3, and func4 are functions that set 

input values to the global variables that are sent to the microcontroller. Normally, 
these variables are collected voltage values from the solar cells which are further 
processed on the Arduino UNO board. The gather function collects all the inputs from 
the 4 global variables that were set by the 4 input sliders and combines them into a 
single string that will be published to the MQTT broker. 
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The topic to which it publishes is “To-7344478”. This string is derived from 
the unique identification number of the NodeMCU ESP 12, which is shown as 
“7344478”. There exists another communication node called “From-7344478” which 
shows the connection status of the ESP8266 Wi-Fi module. The “Sensor Data:” shows 
values from the LT, RT, LD, and RD positions. The “Use random values” node is 
relevant for realizing the experimental results because it provides the option to insert 
input data either manually or automatically. 
 The control flow of the White-box testing strategy is presented in Fig.4.14. 
 

 
Fig. 4.14. White-Box Testing Strategy Execution Flow. 

 
 The test strategy starts with a test environment initialization phase. Here, we 
included the necessary libraries that provide useful functions and APIs that are needed 
for our application. The Variables Allocation block is responsible for specifying the 
password and name of our Wi-Fi connection. Another important aspect is the IP 
address allocation constant, which has a stable value. Prior to upgrading to a Cloud-
based server solution, the field of the IP address required constant rewriting in the 
software code of the ESP8266 board and the Node-RED interface, each time we 
attempted to create experimental testing cases for the solar tracking device. Also, 
important to mention is that in this step, we specify the address of the MQTT broker. 
In our case, this will be our server, which acts as the MQTT broker. The next block 
underneath the Variables Allocation specifies the topic for MQTT communication. On 
an MQTT network, topics are used to decide who receives a message. When a client 
is sending a message, it specifies the topic on the broker to which that message will 
be published. When this message is published successfully on the broker, only clients 
that are subscribed to that message will be able to get the message. Our server has 
already been configured to listen to the messages published by NodeMCU ESP 12. 

 The last block of the Testing environment initialization specifies the serial 
communication details. On the Arduino platform, any 2 pins can be configured to be 
used for Universal Synchronous/Asynchronous Receiver Transmitter (USART) 
communication. In our application, we have specified D5 and D6 to be used as serial 
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communication pins. As a general observation, on the Arduino platform, the setup 
function is used for all the one-time initialization that needs to be made at the start 
of our code like Pin configurations, Serial communication baud rate, Wi-Fi 
Initialization, etc. The next block in the logical diagram designates a cyclical 
instruction set, in other words, a programming structure that repeats itself 
periodically. The considered block launches our serial communication at a baud rate 
of 9600. The first serial communication (serial) is used to print debug messages to 
the Arduino serial terminal. The second serial communication channel is used for data 
exchange with the NodeMCU ESP 12. From here we are able to call a function that 
configures our Wi-Fi. It provides the Wi-Fi Service Set Identifier (SSID) and password 
to the chip so that it can connect to the specified Wi-Fi network. The second block 
from the Starting Serial Communication also calls a function that initializes the MQTT 
protocol by specifying the address of the broker, the topics to subscribe to as well as 
the callback function that should be called when a message is received from the MQTT 
broker. 

The most important step in our software testing technique is enabling the 
main loop function of the Arduino platform. The void loop function on the Arduino Uno 
is the infinite loop which, keeps running as long as there is power. In the loop, first, 
we check if our MQTT connection still exists. One example is the situation when the 
connection to the broker is dropped because of network issues or the client may have 
been rejected by the broker. If our connection still exists, we continue with the current 
process, otherwise, we try to reconnect to the broker. This cyclical structure contains 
two more entities, described as follows: a) an MQTT Broker Status Verification which 
implements a small function in order to publish a message periodically to the broker, 
informing the broker of its state. This enables us to know if our commands sent from 
the Server were relayed to the Arduino successfully; b) an MQTT Feedback Client 
Implementation (client loop), which waits for the messages from the broker and 
passes received messages to our application. 

We use MQTT_Connect to connect or reconnect to the MQTT broker. At the 
very beginning of the MQTT_Connect function, we specify the address of the MQTT 
broker and the port to be used for the connection. In this area, we also specify the 
MQTT callback function, which is the function that we want to call every time we 
receive a message from the broker. In our application, we want to forward every 
message we receive from the broker to the Arduino through serial communication. 
This callback function will, therefore, count the number of attempts to connect to the 
broker. 

Lastly, the logical diagram ends with the MQTT Callback Function 
Implementation, which basically parses the data received from the broker into 
integers and then calls a function UNO_Send() to transmit this data to the Arduino 
over serial communication, together with publishing an acknowledgment message to 
the broker. The received values on the Arduino Uno are therefore injected in the 
device and processed in order to determine the respective outputs of the platform. 
Reaching this point, the service routine will exit the flow execution process. 

Regarding the testing functions, White-box testing is very efficient in finding 
hidden errors and optimizing code base, but one disadvantage is that it does not help 
us find unimplemented or missing issues. White-box testing can be used in Unit 
testing [171], Integration testing, and Regression testing. Some important types of 
White-box testing include Control Flow Testing, Branch Testing, Data Flow Testing, 
Basis Path Testing, and Loop Testing [185]. 

As mentioned earlier, we are applying White-box testing to analyze the 
program structure and attempt to find any bugs or programming errors. Some of the 
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common errors encountered during software programming include Functionality 
errors, Communication errors, Syntax errors, Error Handling errors, Control Flow, and 
Calculation errors. We will not be exploring Syntax errors because we are working 
with a compiled language (C++) and the programmer was informed of all the Syntax 
errors at compile time. We will pay more attention to Communication, Control Flow, 
and Error Handling errors. 

Communication errors are a type of error that occurs in communication 
between software and end-user as well as within the software. We will give particular 
attention to Communication errors within the software because we have 2 
communication links: the first is between the Server and secondary microcontroller 
(MQTT over TCP/IP), and the second is between the primary microcontroller (Arduino 
Uno) and the secondary microcontroller (ESP8266). Error handling defects arise when 
there is no proper structure in place to handle unexpected values or actions in the 
program which could lead to hardware faults, circuit noise, etc. 

Control Flow in a software decides what it will execute next or what action it 
will take under certain conditions. Errors in Control Flow can lead to a buffer overflow, 
unpredictable system states, and a host of other problems. In our firmware, we have 
identified the possible error points in the system using our internal knowledge of the 
firmware structure and tested it using a unit testing library for the Arduino platform 
called AUnit [171]. AUnit is a unit testing framework that draws inspiration from the 
Google Test and Arduino Unit APIs. The following presentation represents a brief 
description of the implementation of the testing techniques on the ESP8266 firmware, 
which acts as a middleman between the Arduino Uno and the MQTT server: the first 
test verifies that the SSID, password, and server addresses provided are valid. This 
test checks if the values are in the alphanumeric range. A wrong SSID, password, or 
MQTT server address by the user will lead to connection failure as the device will not 
be able to connect to the Wi-Fi or to the MQTT broker address.  

Another possible error point which we have tested is the MQTT Topic array. 
This is the topic to which the MQTT client subscribes in order to receive messages 
from the MQTT broker. This topic is unique for each instance of the device, therefore, 
we have to generate them dynamically using the unique identification number of the 
microcontroller. We read this unique identification number and use it to generate a 
string which is then the topic of our incoming message; if there is an error in this 
topic, we will not be able to receive any incoming messages from the broker and our 
device will fail. Therefore knowing the expected length of the unique identification 
number, we run a test that will ensure that the topic of the incoming message is not 
longer than this length and that all the characters have alphanumeric value. The most 
error-prone part here, are the incoming data values. These are the values that are 
received from the MQTT broker and forwarded to the Arduino Uno. The values could 
be corrupted as a result of communication errors or unexpected user input. If we 
successfully forward a wrong value from the Arduino Uno, this can lead to unexpected 
or random behavior of the stepper motors. Therefore, we test to make sure that the 
values received are within a specified range. It is not uncommon for internet 
communication to drop unexpectedly, or for MQTT clients to disconnect from the 
broker. In a situation like this, the device needs to be able to detect that the 
connection has been lost and attempt to reconnect. In this case, we implement a 
control flow test to check the MQTT connection and attempt to reconnect if the 
connection has been lost. Different routers allow connections at different speeds, 
some take a longer time to authenticate before internet access is allowed and 
therefore it is necessary to test that the device has been successfully connected to 
the router before we proceed with the execution of the program. Failure to do this will 
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lead to data loss as the device may attempt to send data when a connection has not 
been established. 

Additionally, the main test on the firmware for the Arduino Uno code is to 
ensure that the data received via serial connection is valid. Serial communication is 
prone to different types of errors, especially at high speeds (e.g. 115200 baud rate). 
If we fail to verify the integrity of the received data, we may feed wrong values to the 
stepper motor controls, which can lead to unpredictable or unintended movements. 
Since these are unsigned analog values, our main test is to ensure that they are not 
above 1024. For a more safety-critical system, we can apply checksums to further 
validate the integrity of the firmware. 
 
 

4.2.4. Experimental Setup and Results for White-Box Testing 
 

In this section, we will present the experimental results regarding the basic 
movements of the solar tracker as well as the coverage percentage of a certain 
category of memory errors. Our testing equipment, which is depicted in Fig.4.10, can 
be divided into two major parts: a) the infrastructure composed of physical 
components such as the Arduino Uno, Dual H-Bridges circuits, stepper motors, and 
the solar panel; b) the abstract layer, given by the software testing code and cloud 
server setup which were developed on the workstation platform and the specialized 
network development board. 

With regard to the basic movements of the solar tracker, we continue with 
the description of the Cloud Server setup to finally shape the testing environment of 
the proposed method. By isolating the Arduino Uno from the rest of the components, 
we can construct a low-cost solution in order to collect the output signals from the 
board. Our method strategy relies on the mounting of LEDs at each digital output of 
the Arduino device. Pulse Width Modulation (PWM) signals usually translate 
themselves in HIGH and LOW digital values (1’s and 0’s). However, this testing artifice 
depends heavily on the observability factor of the test engineer, therefore it is more 
convenient resorting on a professional device such as an Oscilloscope to ease the 
signal gathering process. In this direction, we used a Hantek6022BE PC-Oscilloscope. 
The only necessary requirement before beginning with the actual experiments was 
the initial calibration of the two probes which came equipped with a clipper. The 
experimental results presented in Table 14 are showing the injected random 
unassigned integer values from the Cloud Server which are further processed in the 
software code of the Arduino board. 
 
Table 14. Input values flow obtained from simulating environmental solar changes induced by 

artificial light. 

No. Crt. 
Manually Injected Random 

Integer Values 
Oscilloscope Connections 

A1 A2 A3 A4 Out1 Out2 Out3 Out4 
1 1564 987 1703 983 Clipper Probe Clipper Probe 
2 756 1588 984 2157 Clipper Probe Clipper Probe 
3 1570 1574 984 986 Probe Clipper Probe Clipper 
4 980 988 1588 2170 Clipper Probe Clipper Probe 

 
This is resulting in sequential commands received by the motor drivers in 

order to control the horizontal and vertical motor, in one direction or another. While 
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many of these output values proved to be similar for each motor driver, we decided 
to reduce the number of possible scenarios to 6 test cases. 

 The first test case involves injecting only one high value to a random corner 
of the solar panel. The following values are collected from the solar tracking device 
while it was tested during cloudy weather with normal light distribution. The injected 
random unassigned integer values are adjusted accordantly to fit these real-life 
scenarios. The inputs of the Optocoupler device require additional calibration in order 
to obtain almost similar voltages (inputs of the Arduino board can be seen in [186]). 
As seen in Table 14, the A1, A2, A3, and A4 represent the injected random unassigned 
integer values in the system to test the behavior of the solar tracker, thus the 
movement of the solar panel only begins at a value not lower than 100, meaning that 
the average difference between the corners should be approximately 50. Because the 
Oscilloscope only offered two channels for signal viewing, we had to split the testing 
into multiple subcases given by the manner in which we connected the probes to the 
outputs of the motor drivers. Both motor drivers in Fig.4.10 are identical L298N 
circuits like the ones from our previous work described earlier [17]. Regarding the 
stepper motors, there is one considerable difference involving the horizontal motor 
having a median point in its windings. Each pair of outputs Out1, Out2, respectively 
Out3 and Out4 are separated into two coils. This is why, in the Output Configuration, 
we connected each probe at one winding to receive the digital signals, and the two 
Clippers were linked to the same median point (positive value) of the coil. 

There are multiple methods of driving a stepper motor. To elaborate, we can 
assume that each coil is activated once at a time. However, if we overlap coil 
activation, we can get a more finely tuned step. So if we have 1 activated, then 1 and 
2 activated, then 2 activated, we can see that the internal gear will have a step to the 
left direction between coil 1 and coil 2. This is shown in Fig.4.15. 
 

 
Fig. 4.15. Solar Panel Left and Right Rotation generated by pairing terminals from both 

windings. 
 

Because the exact test scenario can be obtained by injecting a certain value 
for the bottom left corner, we will move on to the next test case. The second test 
case implies injecting only one value for the Right Top Sensor to demonstrate the 
rotation to the left of the solar panel. The third test case combines two injected 
values and proves that no matter how many values we add to the first test scenario, 
the rotation will still remain in the right direction. The fourth test case implies 
inserting specific voltage values to the opposite side of the solar panel, in order to 
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verify its rotation action. With the first four test scenarios completed, we finished the 
entire testing phase of the horizontal motor. The next two test cases are 
dedicated to the vertical motor, which is also worthy to mention that when 
compared to the horizontal stepper it doesn’t contain a common wire in each coil. In 
Fig.4.16, we can observe a short phase delay between the two collected signals, thus, 
this can be understood, since the vertical motor uses fewer steps for lowering the 
solar panel down. 
 

 
Fig. 4.16. Solar Panel Left and Right Rotation generated by pairing terminals from both 

windings. 
 

The resulted measurements show an inverted state of the second signal 
compared to the previous case thus translating these impulses in a lifting operation 
of the solar panel. 

Control Flow errors are related to In Topic and Out Topic values, as seen in 
Fig. 4.14. The Control Flow errors can be detected by using the assertion function of 
the AUnit library [171] which is applied to the input strings that enter the Arduino 
board. Usually, whenever there is a large data package exceeding 10 characters, the 
test program will capture the altered string along with the program structure. 
Calculation Errors may occur in real-time scenarios when negative voltages arise at 
the analog inputs of the solar tracking device. Our WBST solves this issue by 
implementing three assertion functions for testing if the input sensor string is a value 
that fits in the required range from 0 to 1024. At whatever time, a series of input data 
is outside of the specified range, the test program will detect the altered information 
on the serial monitor. To avoid the intrusion of voltages with inverted polarity, it is 
important to additionally check if the input string is an unsigned integer number. Error 
handling faults generally arise from large data packages exceeding a reference value 
of 10.000. 
 If three of these data packets are detected, they will be captured by the test 
program. To demonstrate the efficiency of the presented White-box testing strategy, 
we resorted to 4 batches of test cases, as can be seen in Table 15. 
 

Table 15. Coverage and Speed of Execution for our WBST. 
Test Cases Detected Entries 

Cover
age 
[%] 

Runti
me 

Execu
tion 
[m] 

Name 
Total 
Num
ber 

Control 
Flow 

Errors 

Commun
ication 
Errors 

Calculation 
Errors 

Error 
Handling 

Faults 

Batch 
1 2277 395 2 568 736 74.70 240 

Batch 
2 1087 175 1 242 299 65.96 131 

Batch 
3 

840 118 1 166 214 59.40 110 

Batch 
4 

130 78 0 2 42 93.84 17 
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For these test cases, in order to trigger possible errors/faults, large amounts 

of input data were injected in an automated manner. For the first batch consisting of 
2.277 test cases, we achieved a fault coverage of 17.35% for Control Flow errors, 
24.95% coverage for Calculation errors, and 32.32% for Error handling faults; this 
resulted in a total coverage percentage of 74.62% for all the considered error types. 
Important to notice here is the improved coverage we were able to achieve (i.e. 
93.84%) for a much smaller number of test cases (i.e. 130) in batch 4, which resulted 
in a reduced total runtime execution for the considered tests. The average speed of 
execution per test cycle was estimated between 4 and 5 seconds. It is important to 
mention here that Batch 2 contained 174 error-free data entries while Batch 3 
included 137 data packages without faults. As expected, Communication errors were 
rarely encountered due to the robust implementation of the proposed WBST. 
 
 

4.2.5. Online Built-In Self-Test Architecture for Automated 
Testing of a Solar Tracking Equipment 
 

Typically, a dual-axis solar tracker is composed of many electronic and 
mechanical components such as simple IC, e.g. L298N, and complex ICs, such as 
Microcontroller Units (MCUs), e.g. Arduino UNO, as well as DC-motors and Stepper 
motors. These components, especially the electronic ones, are prone to errors during 
their operation due to the fact that usually, they are functioning under unfavorable 
weather conditions which may cause them to malfunction. By comparison, this is not 
the case for software related errors found in a solar tracker. The hardware malfunction 
can be caused by several types of errors such as single bit-flip errors, stuck-at faults, 
delay faults, and bridging faults, to name only a few. 

Considering these aspects, we aim to minimize the operation costs of our 
dual-axis solar tracker [17], which in case of malfunction (e.g. L298N IC overheating 
issues, stepper motors don’t receive proper stimuli) can result in high financial losses 
by proposing an OBIST architecture. More specifically, we target the automation 
components of our solar tracking system that is composed of an Optocoupler, an 
Arduino UNO, and two L298N ICs and which relies on an Idle State Detector and two 
switch batches in order to enable or disable the online testing procedure. 

Regarding the proposed fault injection strategy and according to the 
traditional fault injection methodology [187], we concluded that the most suitable 
technique for our solar tracking device is the so-called physical-based fault injection 
or Hardware Implemented Fault Injection (HWIFI). 

The fault injection strategy is presented in Fig.4.17 and satisfies two 
objectives in our test scenarios: first, we apply a variety of voltage values to the 
inputs of the Optocoupler and the Arduino UNO and monitor the outputs of each device 
with a multimeter; secondly, we move on to the parasitic signal injection to check the 
output signals of the L298N circuits on the PC Oscilloscope. 
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Fig. 4.17. Fault Injection Strategy General Model applied to our Solar Tracker. 

 
According to our previous study in [18] where we applied a White-box testing 

procedure, we concluded that voltage variation does not affect the system’s stability 
but rather establishes the verge at which the solar tracker starts to function normally, 
usually at 2.1V. Eventually, the parasitic signal injection may be overlapped with 
voltage variation to compensate stability testing of the proposed solar tracking 
system. HWIFI is achieved best via contact (active probes) in order to test the 
dependability of the proposed Sun tracking system and is effective at any level of the 
hardware design, which includes the circuit chain: Optocoupler  Arduino UNO  
L298N. The HWIFI is a top-bottom approach, being extremely useful to mark off the 
fault coverage domain, from regular parasitic signal insertion to more complex 
scenarios such as the test vector injection. HWIFI ensures a very easy encoding 
procedure that will establish the main pattern of a correct signal, as shown in case A) 
from Fig.4.18. 
 

 
Fig. 4.18. Case A: Arduino Output Signals 4 and 5. Case B: Code worded Signal (Blue) and 

Cycle Time (Pink). 
 

If we discard the initial trash value (last 6 bits from a previous Code worded 
Signal) and the repeating sequence, we realize that the valid pattern is structured 
from the Code worded Signal and the last Repeating Sequence composed of binary 
1’s. Together they form a so-called cyclic sequence that is generated continuously in 
order to inject stimulus to the L298N circuit coils. However, one motor driver circuit 
receives four inputs and generates the same number of outputs. The general rule is 
that each 2-signal pairs are equivalent in shape, so it is sufficient to analyze only two 
signal channels on the Oscilloscope. While at first glance, the two generated patterns 
might look the same, there is one major difference between them, as seen in Fig.4.19 
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wherein the dual-channel, we can observe that the first output signal (blue color) has 
the same pattern as the one in Fig.4.20. 
 

 
Fig. 4.19. Top: L298N Output Signals 1 and 4. Bottom: L298N Output Signals 2 and 3. 

 
If we look closer, we can see that the second signal (pink color) behaves in a 

slightly different way, meaning that it generates the inverted pattern of the first 
output. The rewritten data bits by using only the Code worded fragment and the 
Repeating Sequence in both cases is illustrated in case B) from Fig.4.18. 
 

 
Fig. 4.20. Arduino UNO Output Signals. 

 
Regarding the outputs of the DUT, each pair of signals represent the outputs 

of a singular L298N circuit from the two available in our solar tracking device. For 
simplicity, we considered a scenario where we energize the horizontal motor that 
executes a left rotation according to the output seen in Fig.4.19. In order to inject 
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parasitic signals over the correct waveforms, we used a Precision Waveform 
Generator, also known as Voltage Controlled Oscillator (ICL8038), which is able to 
generate three distinct output waveforms, namely sinusoidal, triangle, and square 
waveform signals. In order to obtain an improved performance model, which is even 
more customizable, we started from the basic model design and modified its structure. 
The basic model consists of the variable resistance VR1-potentiometer, the R1-
resistance, and the C1-capacitance which are involved in the following formula (4.4) 
that determines the frequency output (f) of the circuit: 
 

1 1 1

0.15

( ) C
f

VR R


                                                              (4.4) 
  

The first prototype being cheaper also proved less efficient during testing, this 
being the reason for which we switched to an improved version where we used more 
components in order to improve the signal-adjusting feature. By replacing the C1 
component with a variable capacitator, we are able to change the C1 slot by any 
capacitator value that withstands a voltage of 25V, thus providing a variety of 
frequency generation (1 Hz – 100 Hz for 1 µF; 100 Hz – 1 kHz for 0.1 µF; 1 kHz – 10 
kHz for 0.01 µF; 10 kHz – 100 kHz for 0.001 µF). With a proper selector switch, these 
capacitors do not require constant replacement. By choosing different frequency 
ranges, we were able to detect faulty output signals of our two CUTs as seen in 
Fig.4.21. 
 

 
Fig. 4.21. Faulty Output Signals resulted from the Injection Process (Top: Arduino UNO and 

Bottom: L298N Dual H Bridge). 
 
 

4.2.6. Hardware BIST Components 
 

As can be seen in Fig. 4.22, the proposed BIST architecture linked to our 
circuit chain presented earlier in Fig.4.17, is divided into four layers involving: a) the 
construction of a TPG unit which is an LFSR; b) 4 CUTs defined by the Optocoupler, 
Arduino UNO, and two L298N ICs; c) a Results Gatherer which is a MISR; d) with the 
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help of a set of ADCs and DACs as well as a dedicated idle state detector, we 
implemented the BIST architecture that provides an online testing service. 
 

 
Fig. 4.22. Proposed BIST Architecture. 

 
Regarding the TPG (LFSR) implementation, because we target single bit-flips 

and single stuck-at-faults, we will randomly inject a set of test vectors that will be 
constructed from all generated cyclical sequences of an LFSR. The primitive 
polynomial function 1+x+x3+x12+x16 [188] will ensure that the LFSR will be statically 
deployed as seen in Fig.4.23. 
 

 
Fig. 4.23. Proposed LFSR Configuration. 

 
 We chose an LFSR with an internal EXOR gate because usually external gates 
introduce an additional delay to the circuit, which in the case of a fast generation of 
pseudo-random values is not desirable. A 16-rank LFSR will generate all patterns 
equivalent to the numbers between 1 and 65.535 in a pseudo-random order. We 
exclude an initial seed value of 0 0 0…0 because this particular case will always provide 
a cyclical value of zero. 

As a general rule Q[1] is X1, Q[2] is X2, Q[3] is X3, Q[4] is X4 and so forth. 
The shifting of values is given by the following Boolean rules: Q[16]  Q[15], Q[15] 
 Q[14], Q[14]  Q[13] XOR Q[16], … , Q[4]  Q[3] XOR Q[16], … , Q[2]  
Q[1] XOR Q[16] and Q[1]  Q[16]. 

The MISR presented at the bottom part of Fig.4.22 is the most important 
element for our testing objectives. The MISR can be considered the Results Gatherer 
or the ORA for the DUT. This modified version of an LFSR will collect all stimulus 
responses containing faulty signal injections from the CUTs and will store them in the 
16-bit register for future analysis. 

ADCs are mainly used to transform an analog signal (e.g. sinusoidal 
waveform) in a fixed-point binary number while DACs usually execute the reverse 
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function. Since the I/O pins of the Optocoupler and the inputs of the Arduino UNO 
require analog signals, we used one LM741 amplifier together with multiple resistors 
in order to process the information in purely binary or analog values. 

As can be seen in Fig. 4.24, the four digital pins are connected at the input of 
the resistors and by changing the input values, the operational amplifier, which is 
powered at +12V and -12V, will convert the analog signals to binary digits. The 
Optocoupler's opposite side will connect the ADC to the MISR's four digital pins. Our 
ADC encapsulates four comparator circuits that are using LM741 operational 
amplifiers. 
 

 
Fig. 4.24. Example of an LM741 Operational Amplifier. 

 
One of the circuits that requires signal translation is the Optocoupler since it 

receives analog values from the solar panel lines L1 and output lines L2. 
Consequently, the Arduino UNO will require a DAC on input lines L1, as depicted earlier 
in Fig.4.22. 
 The idle state detector is presented in Fig.4.25 and is connected to the 
switches control panel, as depicted in Fig.4.26. Its hardware implementation contains 
2 EXOR gates, one OR gate, and one Inverter. Whenever the sensor readings are all 
0’s or 1’s, the idle state detector will automatically identify that the system is idle, 
meaning that switches batch A will be deactivated and switches batch B will be turned 
on. In any other case, when the values are completely different, the system will be 
active, which leads to the deactivation of the switches batch B and the returning to 
the normal operation data path (given by switches batch A). 
 

 
Fig. 4.25. Idle State Detector Hardware Implementation. 

 



Software and Hardware Testing of a Dual-Axis Solar Tracking Device 110

 As seen in Fig. 4.25, the BC547 transistor is connected to the LED in series, 
and the circuit output is connected to the transistor's base. The transistor's collector 
and emitter are involved in switching the Batches A and B on or off in the control 
panel. 
 

 
Fig. 4.26. Configurable OBIST Architecture Block Diagram. 

 
The final integration of the above-mentioned hardware components is 

presented in the next paragraphs. 
 
 

4.2.7. Proposed OBIST Architecture 
 

The proposed OBIST model represents the joining of the LFSR, CUTs, and 
MISR components into one compact architecture, as can be seen in Fig.4.26. This 
architecture is divided into two stages: first, we construct a hardware Very Large 
Scale Integration (VLSI) design in the Proteus environment; secondly, we develop a 
C++ application that generates signatures based on input test vectors in an 
exhaustive manner in order to validate the results obtained in the first stage of the 
implementation. 

The first part of our implementation details the hardware setup that was 
utilized to validate the results obtained with the developed software code. We used 
Proteus 8.6 Professional Edition as our testing environment because it allows easy 
deployment of physical components (e.g. flip-flops, EXOR gates, transistors, etc.) and 
facilitates the systematic monitoring of the experimental results. The initial logical 
modules were constructed in the software implementation (described in the next 
section) and together with their inherited properties, they are converted into a 
hardware VLSI design model. 
 The proposed software code implementation adopts a layered approach where 
we declare for each virtual component a variable that defines the shifting process of 
the test vectors. For instance, LFSR is an object that will inherit an input, the 3 CUTs 
will depend on the input as well as the Enable line values and the MISR will contain 
the input and the expected signature output. Each Enable line has the role to authorize 
the shifting of the input signal directly to the output depending on its present value. 
In the main body of the program we will declare a LFSR register with an initial seed 
value of Q[16] = [1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1] while the MISR register 
will have an initial value of M[16] = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] so 
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that it can store new signatures for each test cycle. The first layer of the application 
is given by the Logical Module of the LFSR that generates the next pattern according 
to the current value of the register Q[1]. 

Regarding the DUT layer, a logical module implementation is attached to the 
original CUTs, which contain the circuit chain Optocoupler, Arduino UNO, and two 
L298N ICs. The microcontroller and motor drivers depend exclusively on the 4 pin 
input variables In0, In1, In2, and In3 together with the Enable pins High or Low and 
will return the value of the output as an array of Out0, Out1, Out2, and Out3. For 
each test cycle, the CUTs will generate all test vectors that will enter the final layer of 
the implementation. 

The operation mode of the LTV-847 Optocoupler was summarized in Table 16 
where the DAC and ADC perform binary-to-analog conversions as well as the reverse 
function. 
 

Table 16. LTV847 Optocoupler combined with DAC and ADC components. 
Optocoupler combined with DAC Optocoupler combined with ADC 

Binary Input Configuration 
Output 
Values 

Input 
Values Binary Output Configuration 

In[0
] 

In[1
] 

In[2
] 

In[3
] 

Analog 
[V] 

Analog 
[V] Out[0] Out[1] Out[2] Out[3] 

0 0 0 0 0.1 0.1 d d d d 
0 0 0 1 0.3 0.3 d d d d 
0 0 1 0 0.6 0.6 d d d d 
0 0 1 1 0.9 0.9 0 1 0 0 
0 1 0 0 1.2 1.2 0 1 0 1 
0 1 0 1 1.5 1.5 0 1 1 0 
0 1 1 0 1.8 1.8 0 1 1 1 
0 1 1 1 2.1 2.1 1 0 0 0 
1 0 0 0 2.4 2.4 1 0 0 1 
1 0 0 1 2.7 2.7 1 0 1 0 
1 0 1 0 3.0 3.0 1 0 1 1 
1 0 1 1 3.3 3.3 1 1 0 0 
1 1 0 0 3.6 3.6 1 1 0 1 
1 1 0 1 3.9 3.9 1 1 1 0 
1 1 1 0 4.2 4.2 1 1 1 1 
1 1 1 1 4.5 4.5 d d d d 

 
It is important to mention that our solar tracker starts functioning only when 

it receives a voltage value higher than 0.6V at the input of the Arduino UNO, this 
being the reason why the output of the Optocoupler will be only taken into 
consideration for the analog values greater than 0.6V and lower than 4.5V, the reason 
for which we denoted the lower and higher voltage values with “d” in Table 16. The 
MISR logical module takes the current value, calculates a new vector based on the 
CUTs outputs, and stores it back in the MISR register, as can be seen in Table 17. 

 
Table 17. MISR Output Signal Generation. 

No. 
Crt. MISR Inputs MISR Output Sequence 

1 In[15] In[15] = In[14] ^ Out[15] 
2 In[14] In[14] = In[13] ^ Out[14] 
3 In[13] In[13] = In[14] ^ Out[13] 
4 In[12] In[12] = In[14] ^ Out[11] 
5 In[11] In[11] = In[14] ^ Out[11] 
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6 In[10] In[10] = In[14] ^ Out[10] 
7 In[9] In[9] = In[14] ^ Out[9] 
8 In[8] In[8] = In[14] ^ Out[8] 
9 In[7] In[7] = In[14] ^ Out[7] 
10 In[6] In[6] = In[14] ^ Out[6] 
11 In[5] In[5] = In[14] ^ Out[5] 
12 In[4] In[4] = In[14] ^ Out[4] 
13 In[3] In[3] = In[14] ^ Out[3] 
14 In[2] In[2] = In[14] ^ Out[2] 
15 In[1] In[1] = In[14] ^ Out[1] 

16 In[0] 
In[0] = (In[0] ^ tmp) ^ 

Out[0] 
 
The inputs of the MISR register are associated each with the outputs of the 

DUT circuit: Out1, Out2, Out3, ..., Out16. Similarly to the LFSR logical module, we 
will store the Q[15] in a temporal (tmp) variable and will cycle through all the 65.535 
iterations until exhausting all test vectors. The last two components, namely the 
Arduino UNO and L298N motor drivers were implemented according to Table 18. 
 

Table 18. Arduino UNO and L298N equations translated in C++ language. 
 

L298N Integrated Circuits Arduino UNO 

Motor Driver 1 Motor Driver 2 Microcontroller Unit 

Inputs Outputs Inputs Outputs Inputs Outputs 

In[4] 
Out[4] = In[4] && 

EnA In[8] 
Out[8] = In[8] && 

EnA In[12] 
Out[12] = in[12] 

^ in[13] 

In[5] 
Out[5] = In[5] && 

EnA In[9] 
Out[9] = In[9] && 

EnA In[13] 
Out[13] = in[13] 

^ in[14] 

In[6] 
Out[6] = In[6] && 

EnB In[10] 
Out[10] = In[10] 

&& EnB In[14] 
Out[14] = in[14] 

^ in[15] 

In[7] Out[7] = In[7] && 
EnB 

In[11] Out[11] = In[11] 
&& EnB 

In[15] Out[15] = in[15] 
^ in[12] 

 
 

4.2.8. Experimental Setup and Results for OBIST 
 

In order to validate the robustness of our proposed OBIST implementation, 
we cloned the initial CUTs chain in our software simulation to obtain two devices, one 
that generates correct patterns and another one that provides faulty responses. The 
purpose of the proposed architecture is to compare the pseudo-random MISR output 
signatures with the valid generated MISR signatures inside a dedicated block called 
Signal/Signature Analyzer and which is depicted in Fig.4.27. 
During the execution of the software implementation, we have evaluated the fault 
coverage for two types of faults: random singular bit-flips as well as single stuck-at-
faults. The test chain of the CUTs contains a total of 16 bits, but in our experiments, 
we are interested in targeting only 12 bits. These 12 bits are associated with the 
following 3 CUTs: Optocoupler, Arduino UNO, and one L298N circuit. In the case of 
12 bits, the possible number of faults is 4.096. Thus, the entire chain of 16 bits can 
be divided into two parts: one is the least significant part and the other is the most 
significant part. We are able to evaluate the fault coverage by analyzing these two 
parts. 
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Fig. 4.27. Test Mode Architecture for the proposed OBIST strategy. 

 
Single bit-flip errors can be easily detected by applying the single parity 

checking method. The single parity checking method is applied in our software 
implementation by firstly performing an EXOR operation between all the 16 bits of the 
test chain as well as by adding the extra parity bit in the least or most significant 
position of the bits chain, as seen earlier in Fig.4.18. Secondly, in order to determine 
if a single bit-flip has occurred during data transmission, we check the Code worded 
Signal again by calculating the parity bit in the same manner as mentioned earlier 
and comparing it to the initial extra parity bit. 

The fault coverage for the single bit-flips, stuck-at-faults, and the global 
coverage are presented in Table 19 where FCBF represents the fault coverage for single 
bit-flip errors detected, FCSaF represents the fault coverage for stuck-at-faults 
detected and FCG represents the global fault coverage for both the single bit-flips and 
single stuck-at-faults. Regarding single bit-flip errors, in our software simulation, we 
applied the single parity checking method and succeeded to detect 93.93% of the 
targeted errors from a total number of 65.535 injected test patterns, each with a 
different initial seed value during 5 test cases, as seen in Table 19. It is known that 
stuck-at-faults can be easily detected, as they mostly occur due to damaged logical 
gates, transistors, or permanent circuit damage. The five test cases regarding stuck-
at-faults seen in Table 19 are performed by injecting 8, 12, and 16 bits in the test 
chain, and based on the analysis of the Signal/Signature Analyzer, we determined 
that the fault coverage is 100%. 
 

Table 19. Fault Analysis of single bit-flip errors as well as single bit stuck-at-faults. 

No. 
Crt. 

Initial 
Seed 
(HEX) 

FCBF FCSaF FCG 
Last 8 bits 
(Mutant) 

Random 
12 bits 

1 FFFF 93.95% 

100% 96.96% 
2 8FFF 93.93% 
3 8CFF 93.92% 
4 8C9F 93.91% 
5 8C94 93.93% 

 
In order to obtain the global fault coverage of our test chain, we extended the 

initial test cases from 8 bits (the least significant and most significant part of the test 
chain) to a total number of 12 bits representing the entire DUT. Thus, the global fault 
coverage was evaluated for the total number of 12 bits and was determined at 
96.96%, proving that our OBIST solution is capable of detecting all targeted errors 
regardless of the initial seed value. 
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Because the aliasing usually happens when the flawed device's signature is 
exactly the same as the perfect device's signature, the probability of aliasing 
occurrence is calculated with the relation 2-16 = 0.0001 and results in the conclusion 
that in our experiments aliasing appears in very rare cases. 
 
 

4.3. Efficient Implementation of a Self-Sufficient Solar-
Powered Real-Time Deep Learning-Based System  
 

As mentioned earlier, recent advancements in the field of AI, especially DL, 
are happening especially thanks to the availability of huge amounts of data and 
powerful hardware. During training and inference of a DNN, usually expensive and 
power-hungry GPUs are used, resulting in a proportional growth of computational and 
environmental costs, with some NLP models even increasing the carbon footprint 
nearly five times the lifetime emissions of a car [9]. 

Because climate change is a very relevant problem in our society [10] and 
considering goal number 7 (affordable and clean energy) and goal number 13 (climate 
action) of UN’s Sustainable Development Goals [189], efforts to develop and use low-
power embedded devices are made by many companies, an example, in this case, 
being Nvidia’s Jetson TX2 embedded platform [190]. Consequently, in order to reduce 
the carbon footprint and the electricity bills, efforts towards renewable energy are 
made [48], with many researchers building solar tracking systems [17, 191] in order 
to capture the sun’s energy with maximum efficiency. 

Considering that the two domains of AI and renewable energy are of major 
importance for the development of our society, our work introduces a self-sufficient 
solar-powered real-time DL-based system that makes use of solar energy from the 
sun with the help of an updated version of our solar tracker based on the Cast-Shadow 
principle [17] and an Nvidia Jetson TX2 board that runs our real-time animal class 
identification model [15] on videos or using a webcam and also generates additional 
datasets containing images and textual information about the animals present in front 
of the frame, in real-time. In order to justify our decision for choosing an embedded 
platform instead of a laptop, in our experimental results, we present a comparison 
between the two platforms, mainly in terms of power consumption. Additionally, we 
also improve the energy efficiency of the proposed real-time DL-based system by 
implementing a motion detection method based on background subtraction with the 
help of Python and OpenCV [192]. 

A summarized view of the proposed solar-powered DL-based system can be 
seen in Fig.4.28. It consists of our dual-axis solar tracker based on the Cast-Shadow 
principle [17], a solar charge controller, an Ultra Cell accumulator with 12V 9 ampere-
hour (Ah) acid plumb battery, two DC-to-DC inverters (first DC-to-DC inverter 
converts 12V to around 5V necessary for the solar tracker to become autonomous 
regarding energy needs and the second DC-to-DC inverter converts 12V to around 
19V necessary for the Nvidia Jetson TX2 to run only on solar energy) and an Nvidia 
Jetson TX2 embedded platform that uses and powers an external Logitech C920 HD 
Pro webcam in order to identify animal classes in real-time [15]. 
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Fig. 4.28. Summarized view of the proposed solar-powered real-time DL-based system. 

 
 

4.3.1. Solar Panel Improvements 
 

As seen earlier, our old dual-axis solar tracker based on the Cast-Shadow 
principle [17] used a solar panel with 40 PV monocrystalline cells instead of LDRs 
which are usually found in the literature. Twelve of these PV cells are used to control 
4 low-cost circuits, namely 1× Optocoupler LTV 847, 1× Arduino328 Microcontroller, 
2× L298N Dual-H Bridge circuits, and 2× stepper motors which are used for the dual-
axis positioning of the solar tracker. Our solar panel makes use of 3 PV cells from 
each corner to analyze light distribution, 2 bypass diodes to protect PV cells in case 
of a sudden increase or decrease in voltage that may occur due to variable light, and 
2 blocking diodes to protect solar panel’s PV cells from reverse current (i.e. voltage 
from the load such as the Optocoupler or Arduino UNO). 

In order for the real-time DL-based system to run inference completely on 
solar energy, we considered using an updated version of our earlier proposed dual-
axis solar tracker that uses the Cast-Shadow principle [17] in order to optimize its 
position for a more efficient solar energy gain, without the need of sensors. The 
important changes that we made to update our solar tracker in order to use it for the 
experimental results in this paper are: 

1) The effective surface area of the panel used in the above described solar tracker 
was increased from L1 × l1 = 36 × 35 = 1260 cm2 to an area of L2 × l2 = 43 × 
36 = 1548 cm2 to accommodate 60 polycrystalline PV cells. 

2) The method used to produce silicon polycrystalline solar cells is easier to 
implement and less expensive as compared to monocrystalline counterparts, 
resulting in a more cost-effective investment. Additionally, polycrystalline solar 
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panels tend to be somewhat less tolerant of heat than monocrystalline solar 
panels [193]. Due to their higher temperature coefficient, the overall heat 
output will be less significant compared to monocrystalline solar modules. As a 
consequence, our old monocrystalline PV solar cells were replaced by PV 
polycrystalline cells that generate a maximum voltage of 0.55V and a maximum 
current of 0.60A per unit, resulting in a total voltage of 17V and 1.5A generated 
by the improved solar panel. 

 
 

4.3.2. Deep Learning Models used for Inference 
 

In order to prove the efficiency of our solar-powered real-time DL-based 
system, we decided to use our earlier proposed implementation regarding real-time 
identification of animals found in domestic areas of Europe [15] which can also 
generate 2 new datasets in real-time, one dataset containing textual information (i.e. 
animal class name, date and time interval when the animal was present in front of 
the webcam) and one dataset containing images of the animal classes present and 
identified in videos or in front of a webcam. These newly generated datasets are very 
useful, as they can provide insights about what animal classes are present at a given 
date and time in a certain area and how they look like. 

As mentioned earlier, our original DL models presented in [15] were trained 
and tested on a home-made dataset with a total size of 4.06 GB consisting of 90.249 
animal images (72.469 images for training, 8.994 images for validation, and 8.786 
images for testing) belonging to 34 classes on 4 state-of-the-art modified CNN 
architectures (VGG-19, InceptionV3, ResNet-50, and MobileNetV2) using Keras with 
Tensorflow backend, achieving high overall test accuracy (90.56% for the proposed 
VGG-19 model, 93.41% for the proposed InceptionV3 model, 93.49% for the 
proposed ResNet-50 model and 94.54% for the proposed MobileNetV2 model). 

In order to successfully implement and test our Python implementation on the 
Nvidia Jetson TX2 board, we needed to make some adjustments and improvements 
in our initial code from [15] as follows: 

1) First, because Keras saves its weights in a hierarchical data format (.hdf5) file 
which slows the loading of the model on the Nvidia Jetson TX2, we have created 
an optimized (converted it to a frozen graph base model; here the value of all 
variables are embedded in the graph itself thus the protocol buffers (.pb) file 
cannot be retrained) frozen file of our Keras model based on Tensorflow. Keras 
does not include by itself any means to export a TensorFlow graph as a .pb file, 
but we could do it using regular Tensorflow utilities. 

2) Second, because by default Tensorflow pre-allocates the whole GPU memory 
[194] (which can cause “out of memory” errors) and because the Nvidia Jetson 
TX2 GPU doesn’t have dedicated RAM and cannot use its full 8 GB processing 
RAM (the reason for this is because Linux and other processes are using most 
of the available RAM), we implemented a code to control the GPU memory 
allocation and to define (choose a GPU memory ratio allocation from 0 to 1) the 
processing memory percentage usage of the GPU at running time. By doing 
this, we can now control how much data we want to transfer to the GPU that 
processes it and avoid any possible “out of memory” kind of problems which 
otherwise would appear on the Nvidia Jetson TX2 due to its lack of dedicated 
GPU memory. We can now choose a ratio from 0 to 1 to decide the GPU usage 
from low to high by passing the arguments in the command line. 
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3) Third, we implemented a code for testing a certain number of batch frames in 
one shot. For this, we make use of a Numpy array. Numpy array is a fast 
method for data manipulation that saves a matrix of numbers in stacks (e.g. 
we can observe that when we read a frame in OpenCV it becomes numbers in 
the Numpy array, meaning that if we have 900 frames, the Numpy array size 
will be 900, 224, 224). Then, we transferred that batch of frames to our model 
for prediction by changing the number of frames (e.g. we can send 30 frames 
one time like this: 30, 224, 224, so we have a remaining 870, 224, 224 arrays). 
We have tested it on the frozen graph. The frames are passed from 1 to 60. 
Fps batch testing is very useful in our tests because it helps find the optimal 
number of fps our model can efficiently run inference on, e.g. when all 900 
frames from a 31-sec video are predicted in 31 sec or less than that, it means 
that we can run it in real-time (when the identified class name is predicted and 
shown on the webcam frame without being affected by latency). 

Forth, because we wanted to increase the security of animals and humans in 
domestic areas, we also implemented an automated SMS alert system based on Twilio 
API [195], as can be seen in Fig.4.29. 
 

 
Fig. 4.29. Example of an automated SMS alert using Twilio API. 

 
This is very helpful, especially in the cases when a wild animal is detected on 

private property such as a house or a farming area (e.g. when, because of hunger, a 
bear is coming near a flock of sheep or a fox is coming near a chicken coop) because 
it generates and sends an SMS alert to the phone number of the owner, informing 
him what animal class is detected in real-time through the webcam and thus helping 
him to take the necessary actions to maintain security. In order to save the SMS costs 
and not send an SMS alert every time (e.g. every second) a wild animal is detected 
in the webcam frame, we wrote a function that sends the SMS only if the wild animal 
is present in front of the frame for at least 3 seconds (to make sure that there are no 
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SMS alerts sent by mistake due to some 1-second short animal class misdetections in 
the webcam frame). Additionally, in case the same wild animal class was detected 
multiple times in the last 5 minutes, this SMS alert is sent only one time every 5 
minutes (e.g. if a Bear is detected continuously in the front of the webcam for 10 
minutes, the SMS alert will be sent to owner’s phone only two times). 
 

4.3.3. Motion Detection 
 

Because we wanted to lower the power consumption on both platforms when 
running the DL models as much as possible, instead of buying a costly motion 
detection sensor, we implemented a software motion detection method based on the 
difference between pixel intensity of the frames, as seen in Fig.4.30. 
 

 
Fig. 4.30. Summarized view of the proposed motion detection. 

 
For our motion detection method seen in Fig.4.30, in order to speed-up the 

inference processing time of a video or webcam frame, we reduced its size to 224×244 
pixels and used several computer vision techniques using OpenCV as follows: 
 

1) We converted the frame color image to grayscale so that we can avoid some 
effects of illumines. This also results in faster processing. 

2) We applied the Gaussian Blur filter to remove any possible noise in the frame 
image. 
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3) We computed the absolute difference (subtraction) between the current frame 
(foreground) and the first frame (modeled background) in order to calculate if 
their pixel values were close to zero, meaning that motion was not detected, 
otherwise when pixel values are higher, motion is detected. 

4) We applied a frame delta threshold (i.e. with a value of 25), resulting in a black 
and white image (no other gray light color and mid-value in the image; just 
black and white). 

5) We applied dilation (morphological transformation) to the threshold frame in 
order to join the broken parts of an object in the image. 

6) After that, we applied contour detection on the image and measured the 
available contour size. If the contour size is smaller than the given threshold, 
then the pixels in the frame are very similar (as seen on the left side of Fig.4.30) 
and the frame image will not be passed to the inference process. If the contour 
size is higher than the threshold, then it means that the current frame is quite 
different from the previous frame (as seen on the right side of Fig.4.30) and 
the image will be passed to our model for prediction. 

 
There are some advantages of this vision-based motion approach over motion 

sensors, e.g. regular motion sensors are having some drawback regarding range and 
time and require extra acquisition costs whereas this vision-based motion approach 
checks the difference between the previous and present frame in software and if 
something changed in the image, then it takes it as motion and sends the frame to 
the inference process. Another advantage is that, even though the program will run 
all the time having the GPU at running state, the GPU memory transfer will be zero 
because GPU is not computing anything when there is no significant change in the 
present frame compared with the previous one; in this way we protect the GPU to 
heat-up as well. 
 
 

4.3.4. Experimental Setup and Results 
 

We considered implementing the 4 DL model architectures both on an Acer 
Predator Helios 300 PH317-51-78SZ laptop with an Intel Core i7-7700HQ, 16GB DDR4 
RAM memory and the Nvidia GTX 1060 GPU with 6GB GDDR5/X frame buffer, 8 Gbps 
memory speed and 1708 boost clock (MHz) as well as on a Nvidia Jetson TX2 board 
[190] having the following configuration on the hardware side: CPU: ARM Cortex-A57 
(quad-core) @ 2GHz + Nvidia Denver2 (dual-core) @ 2GHz, GPU: 256-core Pascal @ 
1300MHz, Memory: 8GB 128-bit LPDDR4 @ 1866Mhz | 59.7 GB/s, and Storage: 32GB 
eMMC 5.1. On the software side, on the Nvidia Jetson TX2 board, we used Nvidia 
JetPack SDK [196] with Linux Ubuntu18.04 LTS and Tensorflow 1.14.0 (Keras is used 
from within the tensorflow.keras) for both platforms. For the experimental results 
using webcam and motion detection, in the case of the laptop, we use its internal 
webcam, whereas, in the case of the Nvidia Jetson TX2 board, we used an external 
Logitech C920 HD Pro webcam. It is important to mention that with the help of the 
command line interface nvpmodel tool, we run all our Nvidia Jetson TX2 tests on the 
Max-P Core-All mode. 

Following, we will show a comparison between the laptop containing the 
Nvidia GTX 1060 GPU and Nvidia Jetson TX2 regarding inference speed testing and 
also explain why frames batch testing is important when trying to run a DL model in 
real-time on both platforms. Finally, we will present a power usage comparison with 
and without the proposed motion detection on both platforms and motivate our 



Efficient Implementation of a Self-Sufficient Solar-Powered Real-Time Deep 
Learning-Based System 

120

decision for why the Nvidia Jetson TX2 is our platform of choice when designing the 
solar-powered real-time DL-based system. 

The inference speed testing results for the Nvidia GTX 1060 GPU and Nvidia 
Jetson TX2 are presented in Table 20 where a different number of frames were tested 
on both platforms in order to evaluate the time it takes for each of the 4 DL models 
to classify a certain number of frames in under a second, both on a video as well as 
using a webcam. 

 
Table 20. Inference Speed Testing between Nvidia GTX 1060 GPU and Nvidia Jetson TX2 on a 
video as well as using a webcam for VGG-19 (V), InceptionV3 (I), ResNet-50 (R), and 
MobileNetV2 (M) model architectures. 

Number 
of 

Frames 

Nvidia GTX 1060 GPU 

Inference Time (Seconds) 

Nvidia Jetson TX2 

Inference Time (Seconds) 

V I R M V I R M 

1 0.020 0.033 0.027 0.021 0.135 0.114 0.083 0.047 

2 0.029 0.030 0.066 0.021 0.223 0.145 0.115 0.062 

4 0.054 0.043 0.056 0.044 0.368 0.190 0.187 0.305 

8 0.106 0.065 0.080 0.056 0.503 0.289 0.332 0.385 

16 0.190 0.106 0.142 0.109 0.682 0.478 0.599 0.525 

24 0.304 0.158 0.227 0.177 1.107 0.682 0.898 1.059 

 
Because the results were similar, we presented their average values only 

once. As can be noticed in Table 20, the inference time of the Nvidia GTX 1060 GPU 
is always under 1 second for all 4 DL model architectures, even with 24 fps (we also 
tested the GTX 1060 GPU on up to 60 fps, but it is out of scope to present these 
results). In comparison, when running the VGG-19 and MobileNetV2 DL models on 
the Nvidia Jetson TX2 platform with 24 fps, we discovered that the inference time 
takes more than 1 second, so we decided to run all of our Nvidia Jetson TX2 
experiments presented in this paper with 16 fps for all DL architectures. 

Regarding frames batch testing, we tested the effect of batch size on 
computing time by forwarding not just one frame but an n number of frame batches 
to our model for prediction. The frames batch testing is very important because it 
helps choose the fps parameter that finishes the task in the shortest amount of time 
with the highest number of frames (the higher the number of frames, the better the 
prediction) and lowest energy consumption without worries of service interruption 
when deploying later in a real-life scenario. Because of its 6GB dedicated RAM, we 
found out that the Nvidia GTX 1060 GPU can make use of 100% GPU memory 
utilization when running the InceptionV3 and ResNet-50 model architectures but only 
of 80% GPU memory utilization (higher value than this resulted in “out of memory” 
errors) when running the VGG-19 and MobileNetV2 model architectures in real-time. 
Nevertheless, the laptop containing the Nvidia GTX 1060 GPU can help all DL model 
architectures run the fastest prediction (when there is no latency between the present 
frame and predicted animal class name on the frame) at different (higher) fps and 
faster time values (fewer seconds) as compared with the Nvidia Jetson TX2 which 
uses more than half of its memory for running the Linux framework, and which is able 
to run the fps batch testing at only maximum 30% of its memory utilization. The 
reason for this limitation is because with other ratio values it resulted in “out of 
memory” related errors. 
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In order to show the power usage comparison between the two platforms by 
maintaining a high inference accuracy (more fps = better accuracy), we decided to 
run all the experimental results presented in this paper with 30 fps and GPU memory 
ratio = 1 (for the InceptionV3 and ResNet-50) and 0.8 (for the VGG-19 and 
MobileNetV2) on the laptop containing the Nvidia GTX 1060 GPU and with 16 fps and 
GPU memory ratio = 0.3 for all 4 DL model architectures on the Nvidia Jetson TX2. 

Because the final goal is to run the inference in real-time on real-life scenarios, 
we decided to run the experiments regarding power usage only using the webcam 
and not also on a video like in the previously described experiments. 

We calculated the power consumption for the Nvidia GTX 1060 GPU on our 
Linux laptop by running the command “sudo powerstat” and for the Nvidia Jetson TX2 
board by using a convenient power measurement script [197] and also by using the 
command e.g. “sudo ./tegrastats”. 
 We run the experimental results for 5 hours (30 samples/values taken every 
10 minutes) for each of the 4 DL models, both with and without motion detection for 
both platforms, and presented the results in Figs.4.31 and 4.32. 
 

 
Fig. 4.31. Power usage comparison on the laptop (GTX 1060 GPU) running the proposed real-
time animal class identification implementation during a 5 hours test using the webcam without 
and with motion detection method for VGG-19 (V), InceptionV3 (I), ResNet-50 (R), and 
MobileNetV2 (M) architectures. The y-axis represents the Watts value and the x-axis represents 
the total number of sample values taken every 10 minutes. 
 
 Without using the proposed motion detection method, the maximum power 
consumption of the laptop (Nvidia GTX 1060 GPU) was 24.79W when in idle state, 
53.79W when running the VGG-19 model, 55.88W when running the InceptionV3 
model, 55.36W when running the ResNet-50 model, and 54.15W when running the 
MobileNetV2 model. Also, the maximum power consumption of the Nvidia Jetson TX2 
without using the proposed motion detection method was 4.11W when in idle state, 
14.77W when running the VGG-19 model, 12.87W when running the InceptionV3 
model, 11.74W when running the ResNet-50 model, and 10.47W when running the 
MobileNetV2 model. 
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Fig. 4.32. Power usage comparison on the Nvidia Jetson TX2 board running the proposed real-
time animal class identification implementation during a 5 hours test using the webcam without 
and with motion detection method for VGG-19 (V), InceptionV3 (I), ResNet-50 (R), and 
MobileNetV2 (M) architectures. The y-axis represents the Watts value and the x-axis represents 
the total number of sample values taken every 10 minutes. 
 

With the proposed motion detection method, the power consumption is lower 
for both platforms, justifying our decision to implement it. More exactly, the maximum 
power consumption of the laptop (Nvidia GTX 1060 GPU) when using the proposed 
motion detection method was 52.58W when running the VGG-19 model, 55.06W when 
running the InceptionV3 model, 54.35W when running the ResNet-50 model, and 
50.51W when running the MobileNetV2 model. Also, the maximum power 
consumption of the Nvidia Jetson TX2 when using the proposed motion detection 
method was 13.22W when running the VGG-19 model, 12.16W when running the 
InceptionV3 model, 11.43W when running the ResNet-50 model, and 9.49W when 
running the MobileNetV2 model. It is important to mention that in the case of the 
laptop we used the existent internal webcam, whereas for the Nvidia Jetson TX2 we 
used the Logitech C920 HD Pro webcam having an input voltage range from +9V to 
+15V DC and which was powered directly from the embedded board itself. Also, it 
can be observed that for both platforms, the motion detection method reduces energy 
consumption by around 5%. 
 Considering the experimental results from Figs.4.31 and 4.32 which show that 
the laptop containing the Nvidia GTX 1060 GPU consumes around 5 times more energy 
than the Nvidia Jetson TX2 and because we wanted to minimize the investment in the 
improvement of our solar tracker (which otherwise, in the case of laptop would have 
required a 5× increase in the number of solar cells and solar panel size, as well as 
updating the entire circuitry), we decided to make the Nvidia Jetson TX2 as the 
platform of choice for our solar-powered real-time DL-based system. One of the main 
reasons for implementing an efficient solar-powered real-time DL-based system is the 
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consideration of recent efforts regarding climate change [8-10, 49] as well to bring 
awareness to future researchers about the possibility and necessity to use alternative 
sources of renewable and green energy such as that from the sun when designing 
real-time DL-based systems. 

As seen previously in Figs.4.31 and 4.32, the maximum power consumed by 
the Nvidia Jetson TX2 was that of 14.77W without using motion detection and 13.22W 
when using motion detection for the VGG-19 model architecture during a 5 hours test. 
The architecture that had the lowest power consumption during the 5-hour test was 
the MobileNetV2 model architecture, with 9.69W when not using motion detection and 
9.03W when using motion detection. 

In order to make our Nvidia Jetson TX2 board also autonomous from the 
energy needs point of view when running inference using the 4 DL model architectures 
[15] in real-time, instead of using a traditional power plug, we decided to connect it 
to our previous proposed solar tracking device that uses the Cast-Shadow principle 
[17] which we updated and described earlier. A diagram block of the summarized 
autonomous solar-powered real-time DL-based system can be seen in Fig.4.33 below. 
 

 
Fig. 4.33. Connection diagram of the proposed autonomous solar-powered real-time DL-based 

system. 
 

Our improved solar panel comes equipped with 60 polycrystalline cells that 
are able to provide a maximum output voltage of around 17V, as can be seen in Table 
21. The increase from 40 to 60 in the number of PV solar cells is justified by the fact 
that it reduces the risk of voltage drops below 12V in order to keep the battery 
charged continuously even under extreme weather conditions (e.g. cloudy days). 
 
Table 21. Energy generated by our solar tracker when the Nvidia Jetson TX2 is running the VGG-
19 (V), InceptionV3 (I), ResNet-50 (R), and MobileNetV2 (M) model architectures in real-time 
using the external webcam with motion detection during a 5 hours test time. 

Energy Generation of our Solar Tracker 
Test Time 

(Hour) V I R M 

 Voltage Gain [V] 
9:00 17.3 16.98 16.67 16.35 
10:00 16.03 16.3 16.59 17.06 
11:00 17.14 17.06 16.99 16.91 
12:00 16.83 16.64 16.46 16.29 
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13:00 16.1 16.08 16.07 16.05 
Avg. Value 16.68 16.61 16.55 16.53 

 Current Gain [A] 
9:00 1.34 1.36 1.37 1.39 
10:00 1.4 1.22 1.04 0.86 
11:00 0.67 0.67 0.66 0.66 
12:00 0.66 0.64 0.64 0.75 
13:00 0.66 0.65 0.65 0.69 

Avg. Value 0.94 0.90 0.87 0.87 
 Power Gain [W] 

9:00 23.18 23.09 22.83 22.72 
10:00 22.44 19.88 17.25 14.67 
11:00 11.48 11.43 11.21 11.16 
12:00 11.10 10.64 10.53 12.21 
13:00 10.62 10.45 10.44 11.07 

Avg. Value 15.76 15.09 14.45 14.36 
 

According to the schematic presented in Fig.4.33, we linked the output of the 
PV solar panel to the dedicated solar module input of the solar charge controller in 
order to obtain the parameter readings (voltage and current) from our solar tracking 
device (generator) and storage component (accumulator). The solar charge controller 
is a robust all-in-one control system that provides three input-output ports: one 
dedicated to solar modules, one dedicated to feeding the battery from the PV panel 
with collected voltage, and one output module for connecting a current load. Since 
our main objective is to store solar energy in the accumulator, we only use two of the 
available ports. 

A few notable features of the solar charge controller are microcontroller unit 
control, built-in timer, settable voltage, and full protection from overvoltage, 
overcurrent, etc. The Ultra Cell accumulator is a 12V, 9Ah acid-plumb battery that is 
generally used nowadays in UPS systems to provide energy for desktop systems in 
case of local power outages. Due to its chemical composition and charging current of 
around 1A, the charging and discharging time can be analyzed both theoretically as 
well as in real-time scenarios. The main formula that is generally used in charging 
time calculus is given by the following equation (4.5a): 

 
T=Ah/A                                                                                            (4.5a) 
 
where T represents the charging time, Ah depicts the Ampere hour rating of the 
battery and A denotes the charging current in Amperes. In our experimental results, 
first, we calculated the charging current for the 9Ah battery in theory as well as in 
practice: 
 

1) As we know, in theory, the charging current should be 10% of the battery's 
Ah rating. Therefore, charging current for a 9Ah Battery = 9 Ah × (10/100) 
= 0.9 Amperes. However, due to some possible current losses that can appear 
on the battery, instead of exactly 0.9 Amperes, we consider only a value 
between 0.9 and 1.1 Amperes for the charging purpose. Supposing we take 
1 Amp for charging purposes, so charging current for 9Ah Battery = 9/1 = 9 
hours, a situation that usually occurs only in theory 

2) As we know, in practice, it has been noted that 40% of losses occur in the 
case of battery charging. Consequently, the formula will be: 9 × (40/100) = 
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3.6 resulting in 9Ah x 40% of losses. Therefore, 9 + 3.6 = 12.6Ah resulting 
in 9Ah + Losses. According to formula (4.5b), we will now substitute the new 
values and obtain: 

 
12.6/1=12.6 hours                                                                               (4.5b) 

 
Therefore, because the accumulator requires 1A charging current, its 9Ah 

capacity takes almost 13 hours to fully charge with solar energy from the solar 
tracker. However, because our solar-powered real-time DL-based system does not 
drain any solar energy during the night time, this does not influence our experimental 
outcomes. Consequently, the total discharging time of the accumulator can be 
determined by considering the 40% losses and by applying the following formula 
(4.5c): 
 
12.6/0.6=21 hours                                                                               (4.5c) 

 
Since our accumulator is limited to a 12V storage capacity, as can be seen in 

Fig.4.33, we used two voltage inverters. The first DC-to-DC inverter was 
interconnected in parallel so that the battery's output voltage would be increased to 
around 19V as can be seen in Table 22, in order to satisfy the Nvidia Jetson TX2 
board's (consumer) supply voltage requirements in a real-life scenario. 
 
Table 22. Energy stored by our accumulator using the solar tracker when the Nvidia Jetson TX2 
is running the VGG-19 (V), InceptionV3 (I), ResNet-50 (R), and MobileNetV2 (M) model 
architectures in real-time using the external webcam with motion detection during a 5 hours test 
time. 

Energy Storage of our Solar Tracker 
Test Time 

(Hour) V I R M 

 Voltage [V] 
9:00 12.8 12.74 12.7 12.66 
10:00 12.6 12.66 12.71 12.75 
11:00 12.8 12.8 12.79 12.78 
12:00 12.78 12.76 12.75 12.74 
13:00 12.73 12.76 12.8 12.87 

Avg. Value 12.74 12.74 12.75 12.76 
 Charging Current [A] 

9:00 0.84 0.87 0.89 0.92 
10:00 0.94 0.86 0.78 0.65 
11:00 0.9 0.87 0.84 0.82 
12:00 0.92 0.85 0.8 0.79 
13:00 0.88 0.83 0.81 0.8 

Avg. Value 0.89 0.85 0.82 0.79 
 Power [W] 

9:00 10.75 11.08 11.30 11.64 
10:00 11.84 10.88 9.91 8.28 
11:00 11.52 11.13 10.74 10.47 
12:00 11.75 10.84 10.2 10.06 
13:00 11.20 10.59 10.36 10.29 

Avg. Value 11.41 10.90 10.50 10.14 
Voltage Readings for DC-to-DC Inverter (12V to 19V) 

 Voltage Output [V] 
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9:00 19.20 19.15 19.16 19.18 
10:00 19.17 19.14 19.12 19.10 
11:00 19.09 19.10 19.11 19.05 
12:00 19.02 19.04 19.05 19.06 
13:00 19.03 19.02 19.07 19.00 

Avg. Value 19.10 19.09 19.10 19.07 
 

The second DC-to-DC inverter was connected between the energy storage 
element and the back of our solar panel in order to power the automation equipment 
(1× Arduino UNO, 1× Optocoupler, 2× L298N, 2× stepper motors) directly from the 
accumulator. Due to the implemented mechanical blocking elements, when in idle 
state, our solar tracking device consumes less energy (0.32W) with the Arduino UNO 
and L298N ICs and reaches 2W power consumption [17] when it updates its position 
to optimize sun ray exposure (a process which usually takes up to 5 seconds). 

This 2W power consumption can be successfully covered by the accumulator’s 
solar energy provision, proving that our entire solar-powered real-time DL-based 
system can run 100% using renewable and green energy from the sun. Finally, we 
linked the output of the first DC-to-DC inverter to the input of the Nvidia Jetson TX2 
board with the help of a dedicated DC adapter, as seen in Fig.4.33 as well. 

The experimental cases were carried out with our previously described setup 
over a 5 hours’ time span for each of our previously trained architectures (VGG-19, 
InceptionV3, ResNet-50, and MobileNetV2) [15] during 4 days test time. Our results 
show that the output voltage and current values of our solar panel are always 
maintained at an optimum level despite changing weather conditions (e.g. partial 
clouds in the afternoon). 

Also, regarding the energy requirement of the Nvidia Jetson TX2 with the 
external webcam using the implemented motion detection method during a 5 hours 
test, we present the results in Table 23. 

 
Table 23. Energy requirements for the Nvidia Jetson TX2 when running the VGG-19 (V), 
InceptionV3 (I), ResNet-50 (R), and MobileNetV2 (M) model architectures in real-time using the 
external webcam with motion detection during a 5 hours test time. 

Energy Requirement of the Nvidia Jetson TX2 with External 
Webcam and using Motion Detection 

Test Time 
(Hour) V I R M 

 Voltage Draw [V] 
9:00 19.1 19.1 19.1 19.09 
10:00 19.08 19.08 19.08 19.07 
11:00 19.07 19.07 19.07 19.06 
12:00 19.07 19.08 19.07 19.08 
13:00 19.07 19.07 19.06 19.05 

Avg. Value 19.07 19.07 19.07 19.07 
 Current Draw [A] 

9:00 0.58 0.55 0.51 0.46 
10:00 0.52 0.51 0.49 0.46 
11:00 0.56 0.62 0.52 0.47 
12:00 0.42 0.56 0.53 0.47 
13:00 0.66 0.54 0.52 0.47 

Avg. Value 0.54 0.55 0.51 0.46 
 Power Consumption [W] 

9:00 11.07 10.50 9.74 8.78 
10:00 9.92 9.73 9.34 8.77 
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11:00 10.67 11.82 9.91 8.95 
12:00 8 10.68 10.1 8.96 
13:00 12.58 10.29 9.91 8.95 

Avg. Value 10.44 10.60 9.8 8.88 
 

These results prove that a real-time DL-based system can easily take 
advantage of renewable and green energy sources such as solar energy from a solar 
tracking device in order to become self-sustaining from the energy needs point of 
view. More exactly, we can observe that the improved solar tracker generates on 
average around 15 Wh, the accumulator stores around 11 Wh and the Nvidia Jetson 
TX2 board consumes not more than around 10 Wh when running all 4 DL models with 
the motion detection method in real-time. 

The experimental cases were considered relevant for our work due to the fact 
that the DL-based system can run autonomously using free energy from the portable 
solar tracker, thus eliminating the need of connecting it to an AC network. In order to 
check the working conditions and take full control of the Nvidia Jetson TX2 board 
when connected to our solar tracker, we made use of a 7-inch portable monitor that 
was connected with the help of an HDMI as well as a micro-to-USB cable to the Nvidia 
Jetson TX2 board, as can be seen on the right side of Fig.4.28. 
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5. ENVIRONMENTALLY-FRIENDLY METRICS 
FOR DEEP LEARNING 

 
 

With unprecedented growth in the number of platforms, e.g. CPUs, GPUs, and 
FPGAs as well as in the number of DL algorithms, architectures, and frameworks such 
as Tensorflow and PyTorch, the need for a fair comparison between DL-based systems 
when performing training or inference by using appropriate metrics is crucial. 

Until recently, it was difficult to fairly compare DL models due to the inexistent 
standard evaluation criteria. In the last years, efforts to deliver efficient tools for 
benchmarking DL implementations were made by various researchers from both 
academia and industry, an example in this direction being the MLPerf Benchmark 
[198] introduced initially (in 2018) only for training but very recently (in November 
2019) also regarding inference [199] and being supported by a group of 40 
organizations like e.g. Google and Microsoft. Regarding training, when measuring the 
performance of DL implementations, there were many types of metrics used in prior 
DL benchmarks, i.e. throughput (samples per second), but recently Time-To-Accuracy 
(TTA), an end-to-end training time to a specified validation accuracy level, is the 
accepted metric in the DL community, standardized initially by DAWNBench [200] and 
being also the main metric used in MLPerf. A consequence of this race towards 
occupying the first place in a Benchmark with the TTA as a metric for training is that 
the state-of-the-art DL models consume an enormous amount of energy, affecting 
the climate change and limiting the AI innovation, with a report from Allen Institute 
for AI [8] arguing that energy efficiency should be considered a more common 
evaluation criterion for AI papers, at least as important as accuracy and that the focus 
on a single metric is detrimental to our society, economy, and environment. In 
response to vast increases in computational capacity and energy needs, with Nvidia’s 
recent NLP oriented Megatron Project, especially GPT-2 8B, a large and powerful 
Transformer-based language model that required 512 GPUs for training 8.3 Billion 
parameters [7], the massive impact which training such DL models have on the 
environment should be taken very seriously into consideration, with recent work in 
[9] even concluding that there is a very significant carbon footprint to DL. 

Despite there being many available DL benchmarks [198, 199, 201, 202] that 
consider various metrics like time, cost, utilization, memory footprint, throughput, 
timing breakdown, strong scaling and communication as well as latency and load 
balancing, only MLPerf Benchmark is having energy as a metric for training [201] 
(planning to improve the metric regarding measuring power in the inference 
benchmark only in a future update), with Deep500 [201], a benchmark introduced in 
2019, planning to adopt energy as a metric only in the near future as well. Although 
training of DL models has considerable costs, with hardware (e.g. large mini-batch 
training [203] and reduced precision [204]), software (e.g. cuDNN [161]), and 
statistical (e.g. Adam Optimizer [205]) optimizations being proposed in the past for 
improving the computational performance of DL, a critical workload is and will always 
be the inference process. A reason for this is because the training of DL models is 
usually done once, whereas during the inference process because the DL models are 
moved from the research side to the practical side, they are required in some cases 
(i.e. at Facebook) to serve around 200 trillion queries and perform more than 6 billion 
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translations every day [206]. The growing computational demands of inference are 
pushing more than 100 companies to produce and optimize chips for inference; by 
comparison, only 20 companies are targeting training [199]. 

Considering these aspects, we strongly believe in the necessity of 
incorporating in the next generation DL benchmarks the ability to take into account 
the energy consumption that a DL system has when training or running inference. 
Furthermore, we think that it should be taken into account also the autonomy of such 
a system, i.e. its ability to work independently of a traditional power grid source and 
instead is able to use 100% green energy such as solar energy. For a more scalable 
and sustainable future, especially considering the emerging focus of Green AI [8], we 
propose four DL metrics, two for inference called APC and APEC, and two for training 
called TTCAPC and TTCAPEC. 
 
 

5.1. The Proposed Deep Learning Metrics for Inference 
and Training 
 

The current most well-known DL metrics such as accuracy, F1-Score, and 
others fail in evaluating the performance of a DL-based system with regard to its 
impact on the environment due to the energy consumption when running inference 
(e.g. when two DL-based systems have the exact same accuracy but one of them will 
consume 10× more energy than the other, the existent DL metrics would consider 
them equal). 

To solve the problem of lacking in accountability in energy consumption and 
costs, in this section, we will propose two new metrics: APC to tackle the problem of 
energy consumption and APEC to tackle the problem of energy cost. With regard to 
the APEC metric, we believe that this metric will encourage future researchers to use 
only green (e.g. solar) energy when running inference with their DL-based system 
[16]. 

We want the APC and APEC metrics to comply with the following important 
properties: Output range from 0 to 1; 100% accuracy and 0 energy consumption/cost 
imply the value of the metric is 1; 0% accuracy implies the metric is 0 regardless of 
energy consumption/cost; The value of the metric increases with accuracy and 
decreases with energy consumption/cost; Consumption/cost from inaccurate 
inferences are weighted more heavily. We consider these to be the most important 
requisites for a combination of two measures into one metric. Since it is a metric, it 
is desirable that it ranges from 0 to 1, so that it can be expressed in terms of 
percentage and give some sense of how close or distant the value of the metric is 
from the ideal (i.e. 1) result. When combining two measures into a single metric it is 
important to consider how we want each measure to influence the metric. Since lower 
consumption is desirable, consumption should lower the final metric, and since higher 
accuracy is desirable, accuracy should increase the final metric. We also want it to 
convey some common-sense properties: If the DL-based system running inference 
has 0% accuracy it doesn’t matter how much or little it costs because we won’t use 
it, and an inaccurate inference is a complete waste of energy by itself, so it makes 
sense to penalize its cost more heavily. 
 
 

5.1.1. Weighted Consumption/Cost 
 



The Proposed Deep Learning Metrics for Inference and Training 130

With the previous properties in mind, we define a common function presented 
in equation (5.1) for both metrics. It is a prerequisite in order to be able to create the 
final APC and APEC metrics. 

 
𝑊𝐶 (𝑐, 𝑎𝑐𝑐)  = 2𝑐((1 − 𝛼)(1 − 𝑎𝑐𝑐)  + 𝛼. 𝑎𝑐𝑐)                                               (5.1) 
 

This is a function 𝑊𝐶 (𝑐, 𝑎𝑐𝑐) to weight energy consumption/cost differently 
between accurate inferences and inaccurate ones, where c is the energy 
consumption/cost of a system, which could be measured per inference or per unit of 
time, acc is the accuracy of the model and 𝛼 is a parameter (ranges from 0 to 0.5) 
that controls how much weight is assigned to accurate inferences (i.e if 𝛼= 0 the 
weight assigned to accurate inferences is 0; if 𝛼= 0.5, the weight assigned is the 
same in all cases / for accurate as well as inaccurate inferences). 

The function 𝑊𝐶  has the following properties: 
 If the system a has a higher energy consumption/cost than system b 

and both have the same accuracy the weighted consumption/cost of 
b is lower or the same; 

𝑖𝑓 𝑐 > 𝑐  𝑡ℎ𝑒𝑛 2𝑐 ((1 − 𝛼)(1 − 𝑎𝑐𝑐)  +  𝛼. 𝑎𝑐𝑐)  > 2𝑐 ((1 − 𝛼)(1 − 𝑎𝑐𝑐)  +  𝛼. 𝑎𝑐𝑐) 

𝑡ℎ𝑒𝑛 𝑊𝐶 (𝑐 , 𝑎𝑐𝑐)  > 𝑊𝐶 (𝑐 , 𝑎𝑐𝑐) 

 If the system a has better accuracy than system b and both 
consume/cost the same the weighted consumption/cost of a is lower 
or the same; 

𝑊𝐶 (𝑐, 𝑎𝑐𝑐)  = 2𝑐(𝑎𝑐𝑐(2𝛼 − 1) + 1 − 𝛼) 𝑎𝑛𝑑 (2𝛼 − 1) ≤ 0 

𝑖𝑓 𝑎𝑐𝑐 > 𝑎𝑐𝑐  𝑡ℎ𝑒𝑛 𝑎𝑐𝑐 (2𝛼 − 1) + 1 − 𝛼 ≤ 𝑎𝑐𝑐 (2𝛼 − 1) + 1 − 𝛼 

𝑡ℎ𝑒𝑛 2𝑐(𝑎𝑐𝑐 (2𝛼 − 1) + 1 − 𝛼) ≤ 2𝑐(𝑎𝑐𝑐 (2𝛼 − 1) + 1 − 𝛼) 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑊𝐶 (𝑐, 𝑎𝑐𝑐 )  ≤ 𝑊𝐶 (𝑐, 𝑎𝑐𝑐 ) 

 If energy consumption/cost of a system is 0 the weighted 
consumption/cost is 0; 

𝑊𝐶 (0, 𝑎𝑐𝑐) = 2 . 0((1 − 𝛼)(1 − 𝑎𝑐𝑐)  + 𝛼. 𝑎𝑐𝑐) = 0 

 Consumption/cost from inaccurate inferences is weighted more 
heavily. 

Inaccurate inferences as weighted by (1 − 𝛼)  ≥  0.5, since 𝛼 ≤  0.5; 
 
 

5.1.2. Accuracy Per Consumption (APC) Inference Metric 
 

Following, we will present the APC metric. This metric is a function that takes 
into account not only the accuracy of a system (acc) but also the energy consumption 
of the system (c), as can be seen in equation (5.2): 
 

𝐴𝑃𝐶 , (𝑐, 𝑎𝑐𝑐) =
. ( , )  

                                                          (5.2) 
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where c stands for the energy consumption of the system and it’s measured in Wh 
and acc stands for accuracy; 𝛼 is the parameter for the 𝑊𝐶  function, the default 
value is 0.1; 𝛽 is a parameter (ranges from 0 to infinity) that controls the influence 
of the cost in the final result: higher values will lower more heavily the value of the 
metric regarding the cost. The default value is 1. It is important to mention here that, 
as a rule of thumb, our recommendation is to use a value for 𝛽 in the ballpark of 
1/𝑎𝑣𝑔 where 𝑎𝑣𝑔 is the average cost of the systems to evaluate. This average cost is 
among different systems that perform the same task, not each individual cost average 
from a system to measure. For example, if the commonly used methods to solve a 
task have an average cost of B, then, when measuring the APC for these systems, in 
order to compare them to our own, we would use as 𝛽 the value 1/B. 

In the APC metric “c” means consumption and is proposed to be a measure 
of the energy consumption of a single inference in a system, having its value always 
greater than 0. The APC metric’s properties are the following: 

 Ranges from 0 to 1; 

𝑎𝑐𝑐 ≤ 1 𝑎𝑛𝑑 𝑊𝐶 (𝑐, 𝑎𝑐𝑐) ≥ 0 ⇒  𝐴𝑃𝐶 , (𝑐, 𝑎𝑐𝑐)  ≤
1

0 +  1
 = 1 ⇒ 𝐴𝑃𝐶 , (𝑐, 𝑎𝑐𝑐) ≤ 1 

𝑎𝑐𝑐 ≥ 0 𝑎𝑛𝑑 𝑊𝐶 (𝑐, 𝑎𝑐𝑐)  ≥ 0 ⇒ 𝐴𝑃𝐶 , (𝑐, 𝑎𝑐𝑐)  ≥ 0 

 100% accuracy and 0 energy consumption imply the APC is 1; 

𝐴𝑃𝐶 , (0, 1)  =
1

𝛽. 𝑊𝐶 (0, 1)  +  1
=

1

0 + 1
= 1 

 
 0% accuracy implies an APC of 0 regardless of energy consumption; 

 

𝐴𝑃𝐶 , (𝑐, 0)  =
0

𝛽. 𝑊𝐶 (𝑐, 0)  +  1
= 0 

 
 APC increases with accuracy and decreases with energy consumption; 

The nominator increases with accuracy (since it's accuracy itself) and 
the denominator decreases with accuracy (or stays constant) and 
increases with consumption, therefore the premise is valid. 

 
 Consumption from inaccurate inferences is weighted more heavily, as 

can be seen earlier regarding the proof for 𝑊𝐶 . 
In order to see how accuracy and consumption affect the APC value, we plot 

APC over the consumption for different values of accuracy. In Fig.5.1 we can see most 
of the properties demonstrated in this section. 

Where 𝛼 is 0, the consumption is not measured for correct inferences which 
imply that a model with 100% accuracy will not be penalized by its consumption (e.g. 
the constant pink colored line that is seen on the top-left side of Fig.5.1) as compared 
to where 𝛼 is 0.25 and 0.5. 

Similarly, in order to show how different values of 𝛽 affect the APC metric, 
some variations in 𝛽 are presented on the right side of Fig. 5.1 where 𝛽 is 10, 100, 
and 1000. We can see how the higher the 𝛽 the heavier the impact of the energy 
consumption is in the value of the APC metric. 
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Fig. 5.1. How different values of α and β affect the APC metric. 

 
 

5.1.3. Accuracy Per Energy Cost (APEC) Inference Metric 
 

Following, we will present the APEC metric. The function presented in equation 
(5.3) for this metric is in appearance the same as the APC function. 

 

𝐴𝑃𝐸𝐶 , (𝑐, 𝑎𝑐𝑐) =
. ( , )  

                                                          (5.3) 

 
However, in practice, the two metrics are fundamentally different. Here, the 

main difference lays in the meaning of the input “c”. In APEC, “c” means cost and is 
proposed to be a measure of the energy cost of a single inference in a system, 
therefore, it is measured in different units and in different ranges. In Germany, for 
example, 1 kWh of energy costs 30.5 cents EUR [207]. Therefore, if our system pays 
100Wh of energy for each inference, the cost “c” of our system will be 3.05 (cents 
EUR). However, it is possible to set up a system in which one doesn’t pay for the 
energy, for example, if the energy it consumes is a renewable type of energy such as 
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the green energy, e.g. solar energy that comes from the sun with the help of a solar 
tracker [16]. In these kinds of systems, the cost of electricity would be 0, and the 
APEC of these systems would be the same as the accuracy. Only in these cases would 
it be theoretically possible to obtain 100% APEC. 

The APEC metric’s properties are all the same as the APC metric’s properties 
presented earlier. The only difference is the meaning of c, which here means cost, 
thus the impact that different values for 𝛼 and 𝛽 have on the APEC metric is similar 
to the APC metric, as seen earlier in Fig.5.1. 
 
 

5.1.4. Time To Closest Accuracy Per Measured Energy 
(TTCAPME) Training Metric 
 

Following, we will define a metric called Time to closest Accuracy Per 
Measured Energy (TTCAPME) that takes into account the energy consumption/cost of 
a model, its accuracy, and the time it takes to train it up to that point. We also want 
to be able to compare with this metric for the same problem both different models 
and different systems. 

For this, we define a delta in accuracy (𝛿 ) and another one in energy 
consumption/cost (𝛿 ) for each problem, such that variations within that delta are 
considered negligible. For example, if the accuracy delta (𝛿 ) is 0.01 and the energy 
delta (𝛿 ) is 0.1, then a model with 0.924 accuracy and 1.12 energy consumption/cost 
and a model with 0.921 accuracy and 1.18 energy consumption/cost would be 
considered equally good. 

Having defined both deltas, the grid is formed by the intervals of accuracy 
and energy consumption/cost, and the value in each element of the grid is the 
Accuracy Per Measured Energy (APME) of the lowest value in that element of the grid, 
e.g. the element on the accuracy interval (0.25, 0.26) and energy interval (1.5, 1.6) 
would be APME (1.5, 0.25). APME is a function that increases with accuracy and 
decreases with energy consumption/cost. An example of this type of grid can be seen 
in Fig.5.2 where redder colors represent higher values of APC. 
 

 
Fig. 5.2. APC Grid with energy delta (𝜹𝒆) = 1 and accuracy delta (𝜹𝒂) = 0.01. Redder colors 

represent higher values of APC. 
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The grid maps accuracies and energies to the “closest” APC values. This metric 
compares training times of models within the same grid interval, considering better 
the model that takes less time to fall into that interval. 

For models on different APME values, we consider better the one with higher 
APME value. Then, the metric effectively maps the ternary of values (accuracy, energy 
consumption/cost, training time) to the ordered pair of values (“closest” APC, training 
time), and offers us a way to compare between these outputs. 

Ordinality: In order to be able to compare between values of our metric’s 
outputs, we need the mathematical tools to define <, =, >. 

Definition 1.1: Let 𝑎 , 𝑎  be real numbers between 0 and 1 and 𝑏 , 𝑏  real 
positive numbers. Then we define the relationships between the ordered pairs 
(𝑎 , 𝑏 ), (𝑎 , 𝑏 ) as follows: 
If 𝑎 = 𝑎 then (𝑎 , 𝑏 ) <  (𝑎 , 𝑏 ) if and only if 𝑏 > 𝑏 , (𝑎 , 𝑏 ) =  (𝑎 , 𝑏 ) if and only if 
𝑏 = 𝑏  and (𝑎 , 𝑏 ) >  (𝑎 , 𝑏 ) if and only if 𝑏 < 𝑏  
If 𝑎 < 𝑎  then (𝑎 , 𝑏 ) <  (𝑎 , 𝑏 ), and if 𝑎 > 𝑎  then (𝑎 , 𝑏 ) >  (𝑎 , 𝑏 ) regardless of 
𝑏 , 𝑏  

We will prove that the set of ordered pairs with the previously defined 
ordinality is well-ordered. 

Trichotomy: Since we defined the relations case by case, for two pairs only 
one and exactly one of the relations is true. 

Transitivity: We want to prove that if v, w, and z are ordered pairs with the 
previously defined ordinality and v < w and w < z then v < z: 

𝑣 = (𝑣 , 𝑣 ), 𝑤 = (𝑤 , 𝑤 ), 𝑧 = (𝑧 ,  𝑧 ) 
𝑣 < 𝑤 , then either 𝑣 < 𝑤  or 𝑣 = 𝑤  and 𝑣 > 𝑤  
𝑤 < 𝑧 , then either 𝑤 < 𝑧  or 𝑤 = 𝑧  and 𝑤 > 𝑧  
If 𝑣 < 𝑤  then 𝑣 < 𝑧  therefore 𝑣 < 𝑧 
If 𝑣 = 𝑤  𝑎𝑛𝑑 𝑣 > 𝑤  and 𝑤 < 𝑧  then 𝑣 < 𝑧  therefore 𝑣 < 𝑧 
If 𝑣 = 𝑤  and 𝑣 > 𝑤 and 𝑤 = 𝑧  and 𝑤 > 𝑧  then 𝑣 = 𝑧  and 𝑣 > 𝑤 > 𝑧  
therefore 𝑣 < 𝑧 ⋄ 

Well-foundedness: We want to prove that every nonempty set of ordered 
pairs has a least element, that is, it has an element x such that there is no other 
element y in the subset where x > y. This is easy to prove: from a set of ordered 
pairs we can find the elements that have the least value in the first component. Then, 
from these elements, we find the one with greater second component value, and that 
is the least element. 

Parameters Properties: As mentioned earlier, this metric has two 
parameters, energy delta (𝛿 ) and accuracy delta (𝛿 ). Accuracy delta (𝛿 ) reflects 
inversely how important accuracy is for the model. High values for this parameter will 
mean that a larger range of accuracies will be grouped together as if they were the 
same value, therefore making smaller improvements in accuracy is not relevant. Low 
values for these parameters will tend to keep different accuracies separated, which 
will consider better models those with slightly better accuracies than others. 

Following, because the training metric TTCAPME requires a function that 
increases with accuracy and decreases with energy consumption/cost, for simplicity, 
we will define two training metrics by using either APC or APEC as this function. 
 
 

5.1.5. Time to closest Accuracy Per Consumption (TTCAPC) 
Training Metric 
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The objective of this metric is to combine training time and the APC inference 
metric in an intuitive way. The formula for TTCAPC is presented in (5.4): 
 
𝑇𝑇𝐶𝐴𝑃𝐶 , , (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒, 𝑐, 𝑎𝑐𝑐)  =

(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒, 𝐴𝑃𝐶 , (𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (𝑐), 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (𝑎𝑐𝑐)))                                     (5.4) 

 
where trainingTime is the training time in seconds for the system, c is the energy 
consumption per unit of time (Wh) of the system, acc is the accuracy of the system 
and rounded is a function that maps values into a grid of values separated by δ, where 
δ is a positive real value. Some rounded examples: rounded0.1 (1.14) = 1.1; 
rounded0.1 (1.08) = 1; rounded0.1 (0.8) = 0.8; rounded0.5 (1.14) = 1; rounded0.5 

(1.08) = 1; rounded0.5 (0.8) = 0.5. 
This will mean that higher accuracies will be celebrated and higher net energy 

consumptions and higher training times will be penalized. 
 
 

5.1.6. Time to closest Accuracy Per Energy Cost (TTCAPEC) 
Training Metric 
 

The objective of this metric is to combine training time and the APEC inference 
metric. The formula for TTCAPEC is presented in (5.5) and appears the same as the 
one presented earlier in (5.4) for the TTCAPC, but here the meaning of c is different, 
meaning the energy cost of the system. 
 
𝑇𝑇𝐶𝐴𝑃𝐸𝐶 , , (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒, 𝑐, 𝑎𝑐𝑐)  =

(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒, 𝐴𝑃𝐸𝐶 , (𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (𝑐), 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 (𝑎𝑐𝑐)))                                   (5.5) 

 
Similar to TTCAPC, this will mean that higher accuracies will be celebrated, 

but higher energy costs and training times will be penalized. 
 
 

5.1.7. Experimental Setup and Results Regarding APC, APEC, 
TTCAPC, and TTCAPEC Metrics 
 

In order to realize the experiments with the above-defined metrics, we 
needed to measure and extract two types of data: the accuracy of the DL models and 
the energy consumption of the system they run training and inference on. 

For this tasks, regarding the inference, we made use of one of our previously 
trained DL models from the work in [15], namely the MobileNetV2 as well as of the 
systems (i.e. Nvidia Jetson TX2 and a laptop containing an Nvidia GTX 1060 GPU) on 
which this DL model was running inference in real-time [16]. Regarding the training, 
in this case, we make use of all four DL models from [15]. It is important to mention 
that regarding the training time (seconds) for the Nvidia Jetson TX2, the values are 
simulated. For the environment used to perform the calculations of the proposed 
metrics, we decided to use the Python programming language due to its simplicity 
and availability. 

We naturally want to measure the APC for different values of accuracy and 
power consumption, this being the reason why we run the tests on two different 
platforms mentioned earlier, in order to see how they stand against each other. 
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For this, first, we run experiments for 2 hours on both the laptop containing 
the Nvidia GTX 1060 GPU as well as on the Nvidia Jetson TX2 platform and feed their 
power consumption values into the APC equation presented earlier in (5.2), where “c” 
in this case stands for the power consumption of the system running the MobileNetV2 
DL model in real-time using motion detection [16]. Because both platforms run Linux 
Ubuntu, these power consumption values are taken 12 times (one power consumption 
value every 10 minutes) with the help of “sudo powerstat” for the laptop containing 
the Nvidia GTX 1060 GPU and with the help of a power measurement script [197] as 
well as “sudo ./tegrastats” for the Nvidia Jetson TX2 platform. 

Secondly, we noted the accuracy values also every 10 minutes for a total of 
12 times (2 hours), but in this case, instead of measuring the inference accuracy for 
both platforms, we presented them only once, since presenting them for both doesn’t 
influence our experimental results at all. Because of the weather, lighting, and image 
quality conditions, to name only a few, it resulted in many different accuracy values, 
as seen in Table 24. 
 
Table 24. APC with alpha=0.1 and beta=0.1 for our MobileNetV2 DL model [15, 16] running 
inference in real-time for 2 hours, with 12 samples taken every 10 minutes. 

Power Consumption 
[W] Inference 

Accuracy 
[%] 

APC [%] 

Laptop 
Nvidia 
Jetson 

TX2 
Laptop 

Nvidia 
Jetson 

TX2 
50.07 8.85 99.7 65.84 91.39 
50.51 9.01 92.11 49.42 79.81 
47.16 9.01 91.32 49.63 78.69 
49.11 9.07 94.54 54.57 83.27 
49.6 6.94 50.25 13.51 36.4 
49.12 8.96 25.57 5.34 15.13 
49.15 9.19 80.69 34.39 64.46 
48.51 9.11 47.31 12.49 31.06 
47.9 9.23 60.14 18.8 42.25 
47.03 9.05 85.86 41.5 71.21 
48.15 9.15 99.42 65.98 90.68 
46.01 9.3 98.31 64.25 88.79 

 
This situation was very helpful in our experiment because it can be easily seen 

how well our metrics perform beside only with big differences in power consumption 
values. We used alpha=0.1 as the default and beta=0.1 since the average 
consumption is close to 10 and the inverse of this number is 0.1. 
 As we can see, the APC metric succeeds in unifying the two metrics of 
accuracy and energy consumption into one, and therefore it is a better metric in the 
cases where both accuracy and energy consumption are required to be taken into 
account in the final result. 

We also want to measure the APEC of our DL models in order to see how they 
stand against each other and more importantly to see the difference between the two 
types of energy: green energy (solar power) and traditional energy grid. 

For simplicity and because it is out of the scope of this chapter to experiment 
with data regarding electricity costs for all the countries in the world, we will just take 
Germany as an example. According to “Strom Report” (based on Eurostat data) [207], 
German retail consumers paid 0.00305 Euro cents for a Wh of electricity in 2017. We 
will use that value to calculate the cost of energy by plugging it in the equation 
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presented in (5.3), where “c” in this case stands for the energy cost. We can see these 
results in Table 25. 
 
Table 25. APEC with alpha=0.1 and beta=50 for our MobileNetV2 DL model [15, 16] running 
inference in real-time for 2 hours with regular (paid) energy as well as with solar (free) energy. 

Power Cost [Cents EUR] Inference 
Accuracy 

[%] 

APEC [%] APEC Green 
(Solar)-
Powered 

[%] Laptop Nvidia 
Jetson TX2 

Laptop Nvidia 
Jetson TX2 

0.1527 0.0269 99.7 55.87 87.56 99.7 
0.1540 0.0274 92.11 39.74 74.58 92.11 
0.1438 0.0274 91.32 40.03 73.36 91.32 
0.1497 0.0276 94.54 44.65 78.37 94.54 
0.1512 0.0211 50.25 9.77 31.80 50.25 
0.1498 0.0273 25.57 3.77 12.46 25.57 
0.1499 0.0280 80.69 26.43 58.31 80.69 
0.1479 0.0277 47.31 9.01 26.31 47.31 
0.1460 0.0281 60.14 13.82 36.54 60.14 
0.1434 0.0276 85.86 32.64 65.36 85.86 
0.1468 0.0279 99.42 56.08 86.69 99.42 
0.1403 0.0283 98.31 54.36 84.50 98.31 

 
We used alpha=0.1 as the default and beta=50 since the average cost is close 

to 0.03 and the inverse of this number is rounded up to 50. 
 As we see in Table 25, the difference is remarkable between using green 
energy (solar power) or not. In the cases where we use solar energy to power our 
DL-based systems, the APEC is in every case around 20% higher for the Nvidia Jetson 
TX2 platform and around 50% higher for the laptop containing the Nvidia GTX 1060 
GPU in terms of absolute values. As can be observed, the APEC metric succeeds in 
taking into account the availability of the energy by unifying the two metrics of 
accuracy and energy cost into one. In this way, the APEC metric is superior in cases 
where not only the accuracy but also the energy cost matter in the final result. 

Regarding the results presented in Table 26, for the models trained on 
different systems, we can see that if we choose an accuracy delta of 0.1 and energy 
delta of 1, the APC is different for each of them, therefore, this means that the best 
system is the one with the higher APC and training time is not considered. 
 
Table 26. TTCAPC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha=0.1 for four 
different DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two different 
hardware platforms. 

 
Laptop Nvidia Jetson TX2 

V I R M V I R M 

Accuracy 90.5
6 

93.41 93.49 94.54 90.56 93.41 93.49 94.54 

Energy 
Consumptio

n (Wh) 

49.9
525 

53.05
23 

50.26
38 

48.45
08 

11.6138 10.333
8 

9.979
2 

8.9069 
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Rounded 
Accuracy 

90.5
5 93.45 93.45 94.55 90.55 93.45 93.45 94.55 

Rounded 
Energy 

Consumptio
n 

48.5 53.5 50.5 48.5 8.5 10.5 9.5 8.5 

Closest APC 
47.7
21 

50.50
3 

51.83
9 

54.87
9 78.243 80.084 

81.19
0 83.918 

Train 
seconds 

20.2
73 

38.85
3 

21.39
6 

38.84
7 

20.273 38.853 21.39
6 

38.847 

 
However, in Table 27, with the same models but with larger deltas we see 

that two models result in the same APC, and therefore the deciding factor is the 
training time. 
 
Table 27. TTCAPC with Accuracy delta = 5, Energy delta = 10, beta = 0.1 for four different DL 
models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two different hardware 
platforms. 

 
Laptop Nvidia Jetson TX2 

V I R M V I R M 

Accuracy 90.56 93.41 93.49 94.54 90.56 93.41 93.49 94.54 

Energy 
Consumpti
on (Wh) 

49.95
25 

53.05
23 

50.26
38 

48.45
08 

11.613
8 

10.333
8 

9.979
2 8.9069 

Rounded 
Accuracy 92.5 

Rounded 
Energy 

Consumpti
on 

45 55 45 15 5 

Closest 
APC 

52.74
4 

48.146 52.74
4 

73.926 85.352 

Train 
seconds 

20.27
3 

38.85
3 

21.39
6 

38.84
7 20.273 38.853 

21.39
6 38.847 

 
Regarding the experiments for the TTCAPEC metric, we use the same country 

(Germany) and price for electricity (0.00305 Euro cents for a Wh) [207] as mentioned 
earlier regarding the experiments with the APEC metric. 

Similarly to the results regarding TTCAPC presented in Table 26, on Table 28 
we can see that for the models we trained on different systems, if we choose an 
accuracy delta of 0.1 and energy delta of 0.001, the APEC is different for each of 
them, therefore the best system is the one with the best APEC and training time is 
not considered. 
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Table 28. TTCAPEC with Accuracy delta = 0.1, Energy delta = 0.001, beta = 50, alpha=0.1 for 
four different DL models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two 
different hardware platforms. 

 
Laptop Nvidia Jetson TX2 

V I R M V I R M 

Accuracy 90.56 93.41 93.49 94.54 90.56 93.41 93.49 94.54 

Energy 
Cost 

(cents) 
0.1524 0.1618 0.1533 0.1478 0.0354 0.0315 0.0304 0.0272 

Rounded 
Energy 

Cost 
0.1525 0.1615 0.1535 0.14775 0.0355 0.0315 0.0305 0.0275 

Rounded 
Accuracy 90.55 93.45 94.55 90.55 93.45 94.55 

Closest 
APEC 

37.557 40.924 42.096 45.000 68.161 74.739 75.217 78.468 

Closest 
APEC 
Green 
(Solar) 

Powered 

90.55 93.45 94.55 90.55 93.45 94.55 

Train 
seconds 

20.273 38.853 21.396 38.847 20.273 38.853 21.396 38.847 

 
However, as seen in Table 29, with the same models but with larger deltas, 

all models result in the same APEC, and therefore the deciding factor is the training 
time. 
 
Table 29. TTCAPEC with Accuracy delta = 5, Energy delta = 0.1, beta = 50 for four different DL 
models (V-VGG-19, I-InceptionV3, R-ResNet-50, M-MobileNetV2) in two different hardware 
platforms. 

 
Laptop Nvidia Jetson TX2 

V I R M V I R M 

Accuracy 90.56 93.41 93.49 94.54 90.56 93.41 93.49 94.54 

Energy 
Cost 

(cents) 
0.1524 0.1618 0.1533 0.1478 0.0354 0.0315 0.0304 0.0272 

Rounded 
Energy 

Cost 
0.15 0.05 
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Rounded 
Accuracy 92.5 

Closest 
APEC 40.997 65.198 

Closest 
APEC 
Green 
(Solar) 

Powered 

92.5 

Train 
seconds 20.273 38.853 21.396 38.847 20.273 38.853 21.396 38.847 

 
 It is important to mention that despite using the term accuracy in our APC 
and APEC metrics, both metrics can work well also by using another metric in place 
of accuracy (as long as it ranges from 0 to 1, meaning that 0 represents a negative 
score and 1 represents a positive one), such as the ones used by MLPerf Benchmark 
[198, 199]. Also, all the proposed metrics can work for any DL-based system; all that 
is needed is to have the training time, the consumption, the cost, and the accuracy 
measured. 
 
 

5.2. Deep Learning-Based Computer Vision Application 
with Multiple Built-In Data Science-Oriented Capabilities 
 

As mentioned earlier, data is at the core of every DL application. Because the 
ML lifecycle consists of four stages such as data management, model learning, model 
verification, and model deployment [208], in order to collect, analyze, interpret and 
make use of this data, e.g. training accurate models for real-life scenarios, in recent 
years, new specializations were introduced in universities around the world such as 
ML and Data Science, to name only a few. Additionally, also new career positions were 
created recently such as ML Engineer and Data Scientist, being some of the top paid 
positions in the industry [6]. 
 Regarding Computer Vision applications for image classification tasks, a major 
bottleneck before training the necessary DL models is considered to be the data 
collection which consists mainly of data acquisition, data labeling, and improvement 
of the existing data in order to train very accurate DL models [209]. Another 
bottleneck is that, because the amount of data needed to train a DL model is usually 
required to be very large in size and because most of this important data is not 
released to the general public but is instead proprietary, the need of an original 
dataset for a particular DL project can be very crucial. In general, data can be acquired 
either by a) buying it from marketplaces or companies such as Quandl [210] and 
URSA [211]; b) searching it for free on platforms like Kaggle [212]; c) crawling it 
from internet resources with the help of search engine crawlers [213]; d) paying to a 
24/7 workforce on Amazon Mechanical Turk [214] like the creators of the ImageNet 
dataset did to have all of their images labeled [29]; e) creating it manually for free 
(e.g. when the user takes all the photos and labels them himself), which can be 
impossible most of the time because of a low-budget, a low-quality camera, time 
constraints, etc. Also, the importance of image deduplication can be seen in the fields 
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of Computer Vision and DL where a high number of duplicates can create biases in 
the evaluation of a DL model, such as in the case of CIFAR-10 and CIFAR-100 datasets 
[215]. It is recommended that before training a DL classification model, one should 
always check and make sure that there are no duplicate images found in the dataset. 
Finding duplicate images manually can be very hard for a human user and a time-
consuming process, this being the reason why a software solution to execute such a 
task is crucial. Some of the drawbacks of existent solutions are that they usually 
require the user to buy the image deduplication software or pay monthly for a cloud 
solution, they are big in size or are hard to install and use. 

Despite all of these options, especially in the case of scraping the images from 
the internet, once stored they can still be unorganized or of a lower quality than 
expected, with images needed to be sorted out each in their respective class folder in 
order for the user (e.g. data scientist) to be able later to analyze and use this data 
for training a performant DL model. This kind of sorting task can take a tremendous 
amount of time even for a team, from several days or weeks to even months [216]. 
Another difficult task is that once the data is cleaned, organized, and ready to be 
trained from scratch or using transfer learning, because of the variety of DL 
architectures, each with different sizes and training time needed until reaching 
convergence [217], it can be very difficult to know from the beginning which DL 
architecture fits the best a given dataset and will, at the end of the training, result in 
a DL model that has high accuracy. Because energy consumption in DL started to 
become a very debated aspect in recent months, especially regarding climate change 
[8, 10, 16, 20, 50], the necessity of evaluating the performance of DL models also by 
their energy consumption and cost is very crucial. 

Considering these aspects, our work introduces a DL-based Computer Vision 
application that has multiple unique built-in Data Science-oriented capabilities which 
give the user the ability to train a DL image classification model without any 
programming skills. It also automatically searches for images on the internet, sort 
these images each in their individual class folder, and is able to remove duplicate 
images as well as to apply data augmentation in a very intuitive and user-friendly 
way. Additionally, it gives the user an option to evaluate the performance of a DL 
model and hardware platform not only by considering its accuracy but also its power 
consumption and cost by using the environmentally-friendly metrics APC, APEC, 
TTCAPC, and TTCAPEC [20]. 
 
 

5.2.1. The Proposed Deep Learning-Based Computer Vision 
Application 
 

The proposed DL-based Computer Vision application is summarized in Fig. 5.3 
and is built using the Python programming language. It is composed of the most 
common features needed in the Computer Vision field and facilitate them in the form 
of a GUI, without requiring the user to have any knowledge about coding or DL in 
order to be able to fully use it. 
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Fig. 5.3. Summarized view of the proposed Computer Vision application that incorporates 
features such as an automatic Image Crawler and Image Sorter assisted by inference 
classification, an Image Deduplicator, a DL Model Trainer with Data Augmentation capabilities 
as well as calculators regarding Accuracy, APC, APEC, TTCAPC, and TTCAPEC. 
 

Regarding the system, the compilation dependencies and installation 
requirements of the proposed application are Python 3, Windows 10 (or later version), 
or Linux (Ubuntu 12 or later version). Regarding the Python libraries, we use PyQt5 
for creating the GUI, HDF5 for loading DL model files, Tensorflow for training and 
inference, OpenCV for image processing, Numpy for data processing, Shutil for 
copying images in the system, TQDM for showing the terminal progress bar, 
Imagededup [137] for deduplication of images, Icrawler [213] for crawling the images 
and fman build system (fbs) for creating installers. 

There are certain conventions that are common in all the features of the 
proposed application: 

1. Model files: These are .h5 files that contain the architecture of a Keras model 
and the weights of its parameters. These are used to load (and save) a 
previously trained model in order to be able to use it. 

2. Model class files: These are files without extension that contain the labels of 
each of the classes of a DL model. It contains n lines, where n is the number 
of classes in the model, and the line i contains the label corresponding to the 
ith element of the output of the DL model. 

3. Preprocessing function: In this convention, a preprocessing function is a 
function that takes as input the path to an image and a shape, loads the image 
from the input path, converts the image to an array, and fits it to the input of 
the model. 

4. Images folders structures: We use two different folder structures: unclassified 
structures and classified structures. The unclassified images folders structure 
is the simplest one, consisting of just one folder containing images, 
presumably to be classified or deduplicated. The classified images folders 
structure consists of a folder which in turn contains subfolders. Each subfolder 
represents a class of images, is named the same as the label for that class, 
and contains images tagged or classified belonging to that class. 
Following, we will present all the built-in features: Automatic web crawler 

assisted by inference classification, Images deduplication, Images Sorter assisted by 
inference classification, DL Model Trainer with Data Augmentation capabilities, 
Accuracy calculator as well as the APC, APEC, TTCAPC, and TTCAPEC [20] calculators. 

Regarding the image crawler assisted by inference classification, the purpose 
of this feature is to collect images related to a keyword (representing a class) from 
the web and by using a classification algorithm, to make sure that the images are 
indeed belonging to this class. During the inference process needed for cleaning the 
images, a preprocessing is happening in the background, which, depending on the 
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pretrained or custom DL model that is chosen, will resize the images, making them 
have the correct input shape (e.g. 28×28×1 for MNIST and 224×224×3 for 
ImageNet) for the DL model. 

A summarized view of the implemented Image Crawler feature can be seen 
in Fig.5.4 and is composed of the following elements: ‘Model’ - a combo box containing 
all the existent pretrained in-built DL models such as “mnist” or “resnet50” as well as 
the ‘Custom’ option which gives the user the possibility to load his own previously 
trained DL model; Confidence Slider (‘Confidence required’) - a slider to select the 
minimum accuracy value to be used when classifying the images and which ranges 
from 0 to 99; Image Class Selector (‘Select a class of images’) - a combo box 
containing the labels of all the classes from the pretrained built-in selected DL model 
(e.g. 10 classes for when the “mnist” model is selected and 1000 classes when the 
“resnet50” model is selected). Additionally, the box contains an autocomplete search 
function as well; Images Amount (‘Max amount to get’) - a slider to select the number 
of images that should be crawled from the internet, ranging from 1 to 999 and 
‘Destination Folder’ - a browser to select the path for the final location of the obtained 
images. 
 

 
Fig. 5.4. Summarized view of the proposed Image Crawler feature assisted by inference 
classification. 
 

The options under ‘Custom Model Configuration’ only apply when the DL 
model selected is “Custom” and is not built-in in the proposed Computer Vision 
application, e.g. when it was trained by the user itself. These options are: ‘Model File’ 
- a browser to select the .h5 file the user wishes to use for inference and Model Classes 
- a browser to select the file without extension containing the name of each output 
class on which the selected DL model (.h5 file) was trained on. Finally, this feature’s 
GUI interface has a button (‘Add Images!’) that begins the web crawling process. With 
the help of this feature, images are automatically crawled by the crawler and 
downloaded to a temporal folder location. After that, each image is classified with the 
selected DL model, and if the classification coincides with the selected class and the 
confidence is higher than the selected threshold, the image is moved to the 
‘Destination folder’, where each image will be saved in its own class folder. This 
feature automatizes the population of image classification datasets by providing a 
reliable way of confirming that the downloaded images are clean and correctly 
organized. 

Regarding images deduplication, the purpose of this feature is to remove 
duplicate images found in a certain folder. For this, we incorporated the Imagededup 
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techniques found in [137]. A summarized view of the implemented Images 
Deduplication feature can be seen in Fig.5.5. 
 

 
Fig. 5.5. Summarized view of the proposed Image Deduplication feature. 

 
 This feature is composed of the following elements: ‘Images folder’ - a 

browser to select the location of the folder containing the images that need to be 
analyzed for duplicate images; ‘Destination folder’ - a browser to select the location 
of the folder where the deduplicated images will be stored; ‘Duplicates Folder’ - a 
browser to select the location of the folder where the found duplicate images will be 
stored. Each duplicate image found will be stored in a subfolder. Regarding advanced 
settings, it is composed of: Hashing method selector (‘Select a hashing method’) - a 
combo box containing 4 hashing methods that can be used for deduplication 
(Perceptual Hashing (default), Difference Hashing, Wavelet Hashing, and Average 
Hashing) as well as a ‘Max Distance Threshold’ - the maximum distance by which two 
images will be considered to be the same (default value is 10). Finally, this interface 
has a button (‘Deduplicate!’) that begins the deduplication process according to the 
selected parameters. 

Following, we will shortly describe the types of hashes we are using in the 
images deduplication feature: a) Average Hash: the Average Hash algorithm first 
converts the input image to grayscale and then scales it down. In our case, as we 
want to generate a 64-bit hash, the image is scaled down. Next, the average of all 
gray values of the image is calculated and then the pixels are examined one by one 
from left to right. If the gray value is larger than the average, a 1 value is added to 
the hash, otherwise a 0 value; b) Difference Hash: Similar to the Average Hash 
algorithm, the Difference Hash algorithm initially generates a grayscale image from 
the input image. Here, from each row, the pixels are examined serially from left to 
right and compared to their neighbor to the right, resulting in a hash; c) Perceptual 
Hash: After gray scaling, it applies the discrete cosine transform to rows and as well 
as to columns. Next, we calculate the median of the gray values in this image and 
generate, analogous to the Median Hash algorithm, a hash value from the image; d) 
Wavelet Hash: Analogous to the Average Hash algorithm, the Wavelet Hash 
algorithm also generates a gray value image. Next, a two-dimensional wavelet 
transform is applied to the image. In our case, we use the default wavelet function 
called the Haar Wavelet. Next, each pixel is compared to the median and the hash is 
calculated. Regarding this deduplication feature, first, the hasher generates hashes 
for each of the images found in the images folder. With these hashes, the distances 
between hashes (images) are then calculated and if they are lower than the maximum 
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distance threshold (e.g. 10), then they are considered duplicates. Secondly, for each 
group of duplicates, the first image is selected as “original” and a folder is created in 
the duplicates folder with the name of the “original” folder. Then all duplicates of this 
image are stored on that folder. This feature successfully integrates the image 
deduplication technique [137] and provides a simple and quick way to utilize it. 
 Regarding the image sorter assisted by inference classification, this feature 
helps a user to sort an unsorted array of images by making use of DL models. A 
summarized view of the implemented Images Sorter feature assisted by inference 
classification can be seen in Fig.5.6 and is composed of elements similar to the ones 
presented earlier for the Image Crawler feature, but in this case with the function of 
selecting the path to the folders from which and where images should be sorted. 
 

 
Fig. 5.6. Summarized view of the proposed Image Sorter feature assisted by inference 
classification. 
 

In the destination folder, a new folder is created for each possible class, with 
the name extracted from the file without extension that contains all the names of the 
classes, plus a folder named ‘Undetermined’. Then, each image from the ‘Images 
Folder’ is automatically preprocessed, feed as input to the selected DL model, and 
saved in the corresponding class folder. The highest value from the output determines 
the predicted class of the image: if this value is less than the minimum ‘Confidence 
required’, value, then the image will be copied and placed in the ‘Undetermined’ 
folder, otherwise, the image will be copied to the folder corresponding to the class of 
the highest value from the output. We took the decision of copying the files instead 
of moving them, for data security and backup reasons. This feature heavily reduces 
the amount of time required to sort through an unclassified dataset of images by not 
only doing it automatically but also removing the need to set up coding environments 
or even write a single line of code. 

Regarding the model trainer with data augmentation capabilities, this feature 
gives the user a simple GUI to select different parameters in order to train and save 
a DL image classifier model. A summarized view of the implemented DL Model Trainer 
feature assisted by inference classification can be seen in Fig.5.7. 
 This feature is composed of the following elements: ‘Model’ – as described 
earlier for the Image Crawler feature; ‘Sorted images folder’ - a browser to select the 
folder that contains the classified folder structure with the images to be trained on; 
‘Number of training batches’ - an integer input, to specify the number of batches to 
train and ‘Size of batches’ - an integer input, to specify the number of images per 
batch. Regarding the custom options, they are the same as mentioned earlier 
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regarding the Image Crawler feature. Next, this interface has a button (‘Train model’) 
that, when clicked on, prompts a new window for the user to be able to visualize in a 
very user-friendly way all the image transformations that can be applied to the 
training dataset in a random way during training. 
 

 
Fig. 5.7. Summarized view of the proposed DL Model Trainer feature. 

 
More exactly, as can be seen in Fig.5.8, the user can input the following 

parameters for data augmentation: Horizontal Flip - if checked the augmentation will 
randomly flip or not images horizontally; Vertical Flip - if checked the augmentation 
will randomly flip or not images horizontally; Max Width Shift - Slider (%), maximum 
percentage (value between 0 and 100) of the image width that it can be shifted left 
or right; Max Height Shift - Slider (%), maximum percentage (value between 0 and 
100) of the image height that it can be shifted up or down; Max Angle Shift - Slider 
(degrees °), the maximum amount of degrees (value between 0 and 90) that an 
image might be rotated and Max Shear Shift - Slider (%), maximum shear value 
(value between 0 and 100) for image shearing. 
 

 
Fig. 5.8. Summarized view of the proposed Data Augmentation feature. 
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The data augmentation feature allows the user to visualize the maximum 

possible changes that can be made to an image in real-time, without the need of 
guessing the right parameters. Following, a training generator is defined with the 
selected parameters; the generator randomly takes images from the folder structure 
and fills batches of the selected size, for the number of batches that are selected. 
These batches are yielded as they are being generated. Regarding the training, first, 
the selected DL model is loaded, its output layer is removed, the previous layers are 
frozen and a new output layer with the size of the number of classes in the folder 
structure is added. The model is then compiled with the Adam optimizer [205] and 
the categorical cross-entropy as the loss function. Finally, the generator is fed to the 
model to be fitted. Once the training is done, the total training time is shown to the 
user and a model file (.h5) is created on a prompted input location. This feature 
achieves the possibility of training a custom DL model on custom classes just by 
separating images in different folders. There is no knowledge needed about DL and 
this feature can later also be easily used by the Image Sorting feature described 
earlier in order to sort future new unsorted images. 

Regarding the accuracy calculator, this section of the application GUI gives a 
user the option to compute the accuracy of a DL model on the given dataset in the 
classified images folder structure. A summarized view of the implemented Accuracy 
Calculator feature can be seen in Fig.5.9 and is composed of the following elements: 
‘Model’ - as described earlier for the Image Crawler feature; ‘Test images folder’ - a 
browser to select the folder that contains the classified folder structure to measure 
the accuracy of a DL classification model; ‘Size of batches’ - an integer input, to 
specify the number of images per batch. The custom options are the same as 
mentioned earlier regarding the Image Crawler feature. Finally, this interface has a 
button (‘Calculate Accuracy’) that starts the accuracy evaluation process. 
 

 
Fig. 5.9. Summarized view of the proposed Accuracy Calculator feature. 

 
 After loading the DL model and the list of classes, it searches for the classes 
as subfolders names in the classified images folder structure. Then, for each class (or 
subfolder) it creates batches of the selected batch size, feeds them to the DL model, 
and counts the number of accurate results as well as the number of images. With 
these results, it calculates the total accuracy of the DL model and shows it to the user 
directly in the application GUI. This feature provides a simple and intuitive GUI to 
measure the accuracy of any DL image classification model. 
 Regarding the APC calculator, this GUI feature makes use of our APC metric 
[20] and which is a function that takes into account not only the accuracy of a system 
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but also its energy consumption. The application GUI gives a user the option to define 
the values for 𝛼 and 𝛽 as well as to specify and calculate the accuracy and energy 
consumption of a DL model. A summarized view of the implemented APC Calculator 
feature can be seen in Fig.5.10 and is composed of the following elements: ‘Model 
test accuracy (%)’ - this widget gives a user the option to input the accuracy or to 
use the previously described Accuracy Calculator feature to measure the accuracy of 
a DL model and ‘Energy Consumption (Wh)’ - float input to specify the power 
consumption of a user’s DL model. 
 

 
Fig. 5.10. Summarized view of the proposed APC Calculator feature. 

 
 Regarding the advanced options, it has: Alpha (𝛼) - float input to specify the 
desired value of 𝛼 (default 0.2) and Beta (𝛽) - float input to specify the desired value 
of 𝛽 (default 1). For simplicity, a table is shown with the following columns: Accuracy, 
Energy Consumption, Alpha, Beta, and APC. Whenever a value is changed, the table 
is automatically updated as well. Finally, the application GUI has a button (‘Calculate 
APC’) to begin the calculation of the APC metric. The function itself is an 
implementation on Numpy of our previously defined APC metric [20] and takes as 
input parameters the values defined in the application GUI. The implemented feature 
brings this new APC metric to any user by allowing them to easily calculate the APC 
and know the performance of their DL model with regards to not only the accuracy 
but also to the impact it has on the environment (higher energy consumption = higher 
negative impact on nature). However, the drawback of the current version of this APC 
calculator feature in the proposed application GUI is that the user has to measure the 
energy consumption of the system manually. 
 Regarding the APEC calculator, the APEC feature is presented in Fig.5.11 and 
lets a user define the values for 𝛼 and 𝛽, specify or calculate the accuracy of a DL 
model, specify the energy consumption of the DL model and specify the cost of Wh, 
and calculates the resulting APEC. 

The APEC feature of the proposed Computer Vision application is composed 
of the following elements: ‘Model test accuracy (%)’ – works similar to the APC widget 
described earlier; ‘Energy Consumption (Wh)’ - works also similar to the APC widget 
described earlier and Wh Cost - float input to specify the cost in EUR cents of a Wh. 
Regarding the advanced options, we have: Alpha (𝛼) - float input to specify the 
desired value of 𝛼 (default 0.2) and Beta 𝛽 - float input to specify the desired value 
of 𝛽 (default 1). A similar table like the one for APC Calculator is shown also here, 
with the following columns: Accuracy, Energy Cost, Alpha, Beta, and APEC. Whenever 



ENVIRONMENTALLY-FRIENDLY METRICS FOR DEEP LEARNING 149

a value is changed, the table is automatically updated here as well. Finally, the 
application GUI has a button (‘Calculate APEC’) to begin the calculation of the APEC 
metric. The function itself is an implementation on Numpy of our previously defined 
APEC metric [20] and takes as input parameters the values defined in the application 
GUI. 
 

 
Fig. 5.11. Summarized view of the proposed APEC Calculator feature. 

 
The implemented feature brings this new APEC metric to any user by allowing 

them to easily calculate the APEC and evaluate the performance of their DL model 
with regards to the impact it has on the environment (higher energy consumption = 
higher cost = negative impact on nature). However, the drawback of the current 
version of this APEC calculator feature is that the user has to measure the energy 
consumption of the system and calculate its Wh cost manually. 

Regarding the TTCAPC calculator, the objective of the TTAPC metric [20] is to 
combine training time and the APC inference metric in an intuitive way. The TTCAPC 
feature is presented in Fig.5.12 and is composed of the following elements: ‘Model 
test accuracy (%)’ and ‘Energy Consumption (Wh)’, both working similar to the APEC 
widget described earlier; ‘Accuracy Delta’ – float input to specify the granularity of 
the accuracy axis; ‘Energy Delta’ – float to specify the granularity of the energy axis. 
 

 
Fig. 5.12. Summarized view of the proposed TTCAPC Calculator feature. 
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Regarding the advanced options, they are the same as the ones presented 
earlier regarding the APEC feature. 

A similar table like the one for APEC Calculator is shown also here, with the 
following columns: Accuracy, Energy Consumption, Alpha, Beta, Accuracy Delta, 
Energy Delta, Rounded Accuracy, Rounded Energy, Training Time, and Closest APC. 
Whenever a value is changed, the table is automatically updated here as well. Finally, 
the application GUI has a button (‘Calculate TTCAPC’) to begin the calculation of the 
TTCAPC metric. 

Regarding the TTCAPEC calculator, the objective of the TTCAPEC metric [20] 
is to combine training time and the APEC inference metric. The TTCAPEC feature is 
presented in Fig.5.13 and is composed of the same elements like the TTCAPC feature 
presented earlier and one additional element called ‘Energy Cost (EUR cents per Wh)’ 
which is similar to the one presented earlier regarding the APEC metric calculator and 
where the user can specify the cost in EUR cents of a Wh. 
 

 
Fig. 5.13. Summarized view of the proposed TTCAPEC Calculator feature. 

 
A similar table like the one for TTCAPC Calculator is shown also here, with the 

following columns: Accuracy, Energy Cost, Alpha, Beta, Accuracy Delta, Energy Delta, 
Rounded Accuracy, Rounded Energy, Training Time, and Closest APEC. Finally, the 
application GUI has a button (‘Calculate TTCAPEC’) to begin the calculation of the 
TTCAPEC metric. 
 
 

5.2.2. Experimental Setup and Results 
 

Following, we will show the experimental results regarding all the 
implemented features in comparison with existing alternatives found in the literature 
and industry. We run our experiments on a Desktop PC with the following 
configuration: on the hardware side we use an Intel(R) Core(TM) i7-7800X CPU @ 
3.50GHz, 6 Core(s), 12 Logical Processor(s) with 32 GB RAM, and an Nvidia GTX 1080 
Ti as the GPU; on the software side we use Microsoft Windows 10 Pro as the operating 
system with CUDA 9.0, CuDNN 7.6.0 and Tensorflow 1.10.0 using the Keras 2.2.4 
framework. 
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 As can be seen in Table 30, our proposed Image Crawler feature outperforms 
existent solutions and improves upon them. 
 

Table 30. Comparison between existent and the proposed Image Crawling solution. 

Features Existent Solutions 
[213] 

Proposed 
Solution 

Image Crawler Yes Yes 
Built-In DL Models No Yes 
Custom DL models No Yes 

Cleans Dataset 
automatically? 

No Yes 

Speed Test (sec) 
Crawling 97 Images 23 23 
Cleaning 97 Images 47 10 

 
Even though the crawling took the same amount of time, this is not the case 

regarding the cleaning part, where, because this feature is not available in any of the 
existent solutions, this needed to be done manually and took 47 seconds for a folder 
containing 97 images as compared to only 10 seconds for our proposed solution which 
executed the task automatically. A comparison between “dirty” images and clean 
images can be seen in Fig.5.14 where, for simplicity, we searched for 97 pictures of 
“cucumber”, which is one class from a total of 1000 classes found in the ImageNet 
dataset. 
 

 
Fig. 5.14. Summarized view of comparison between existent and the proposed image crawling 
solution. The pictures marked with a red rectangle are some examples of “dirty” images found 
in existent solutions. By comparison, the proposed image crawling feature assisted by DL 
inference contains only clean images. 
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It can be easily observed how the existent solutions provide images that don’t 

represent an actual cucumber, but products (e.g. shampoos) that are made out of it. 
After automatically cleaning these images with a confidence rate of 50% with the 
proposed feature, only 64 clean images remained in the folder. 

For the experiments seen in Table 31, we tested the speed time of the 
proposed built-in image deduplication feature that uses the Imagededup python 
package [137]. We run these experiments on finding only exact duplicates on the 
same number of images with a maximum distance threshold of 10 for all four hashing 
methods. As can be seen, the average speed is about 16 seconds for finding duplicates 
in a folder containing 1.226 images, with Difference Hashing being the fastest hashing 
method from all four. 
 
Table 31. Speed Results for the 4 hashing methods of the proposed Image Deduplication feature. 

No. of 
Images 

Hashing Method Speed Time (sec) 

1.226 

Perceptual Hashing 16 
Difference Hashing 15 
Wavelet Hashing 17 
Average Hashing 16 

 
For our experiments regarding the sorting of images with the proposed images 

sorter feature, we used both the MNIST as well as the ImageNet pre-trained models 
with a confidence rate of 50% and presented the results in Table 32. 
 

Table 32. Speed Time for the proposed Images Sorting feature. 

DL Model No. of 
Classes 

No. of 
Images 

Undetermined 
Images 

Speed Time 
(sec) 

MNIST 10 70.000 69 307 
ImageNet 1000 456.567 135.789 40.817 

Custom [15] 34 2.380 34 223 
 

Regarding MNIST experiments, we converted the MNIST dataset consisting of 
70.000 images of 28×28 pixels to PNG format by using the script in [218] and mixed 
all these images in a folder. After that, we run our image sorter feature on them and 
succeeded to have only 0.09% of undetermined images, with a total speed time of 
around 6 minutes. Regarding ImageNet, we used the ImageNet Large Scale Visual 
Recognition Challenge 2013 (ILSVRC2013) dataset containing 456.567 images 
belonging to 1000 classes with a confidence rate of 50%. Here we successfully sorted 
all images in around 11 hours and 20 minutes, more exactly in 40.817 seconds, with 
29.74% (135.789) undetermined images. Regarding the custom model, we used one 
of our previously trained DL models (ResNet-50) that can classify 34 animal classes 
[15] on a number of 2.380 images of 256×Ratio pixels (70 images for each of the 34 
animal classes) with a confidence rate of 50%. Here we succeeded to have 1.42% 
undetermined images, with a total speed time of almost 4 minutes. The percentage 
of the undetermined images for all cases can be improved by modifying the confidence 
rate, but it is out of this work’s scope to experiment with different confidence values. 

The time that a DL prediction task takes depends on a few variables, mainly 
the processing power of the machine used to run the model, the framework used to 
call the inference of the model, and the model itself. Since processing power keeps 
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changing and varies greatly over different machines, and all the frameworks are 
optimized complexity wise and keep evolving, we find that among these three, the 
most important to measure is therefore the model itself used in the prediction. Models 
vary greatly in their architecture, but all DL models can be mostly decomposed as a 
series of floating points operations (FLOPs). Because, generally, more FLOPs equal 
more processing needed and therefore more time spent in the whole operation, we 
measured the time complexity of the built-in ImageNet (‘resnet50’) and MNIST 
(‘mnist’) models in FLOPS and achieved 3.800 MFLOPS or 3.8 GFLOPS regarding 
ImageNet and 9 MFLOPS or 0.009 GFLOPS regarding MNIST. 

For the experiments regarding the DL model training feature, because we 
want to evaluate the application on a real-world problem, we will attempt to show 
that this feature could be very useful for doctors or medical professionals in the aid 
of detecting diseases from imaging data (e.g. respiratory diseases detection with x-
ray images). In order to prove this, we will attempt to automatically sort between the 
images of sick patients versus healthy patients regarding, firstly, pneumonia [64], 
and secondly, COVID-19 [65], all within our application and doing it only with the 
training feature that the application provides. For this, first, in order to classify 
between x-ray images of patients with pneumonia versus x-ray images of healthy 
patients, we made use of transfer learning and trained a ‘resnet50’ architecture for 
around 2 hours without data augmentation on pneumonia [64] dataset containing 
5.200 train images by selecting 10 as the value for the number of training batches 
and 10 as the value for the size of batches (amount of images per batch) and achieved 
98.54% train accuracy after 10 epochs. Secondly, in order to classify between x-ray 
images of patients with COVID-19 versus x-ray images of negative patients, we again 
made use of transfer learning and trained a ‘resnet50’ architecture for around 1 hour 
without data augmentation on the COVID-19 [65] dataset containing 107 train images 
by selecting the same values for the number and size of training batches as the 
pneumonia model mentioned above and achieved 100% train accuracy after 100 
epochs. 

For the experiments regarding the accuracy calculator feature, we used the 
two custom DL models trained earlier to classify x-ray images of patients with 
pneumonia versus x-ray images of healthy patients and between x-ray images of 
patients with COVID-19 versus x-ray images of negative patients, with 20 as the size 
of batches (20 images per batch). The evaluation took in both cases around 50 
seconds with a test accuracy of 93.75% regarding the pneumonia model on 620 test 
images and 91% regarding the COVID-19 model on 11 test images, proving that the 
proposed Computer Vision application can easily be used by any medical personal 
with very basic computer knowledge in order to train and test a DL classification model 
for medical work purposes. 

Regarding the simulated experiments with the proposed APC [20] calculator 
feature, we presented the results for different model test accuracy (%) and energy 
consumption (Wh) values in Table 33. We run all the experiments with 0.2 as the 
alpha value and with 1.0 as the beta value. 
 

Table 33. Summarized Results of the proposed APC Calculator feature. 

Energy 
Consumption 

(Wh) 

DL Model 
Test 

Accuracy 
(%) 

APC (%) 

10 99.0 32.14 
2 99.0 69.91 
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1 99.7 82.91 
10 99.7 32.96 
50 99.7 8.96 
10 94.5 27.47 
50 50.0 1.61 
1 50.0 31.25 
10 50.0 7.14 
10 40.0 5.12 
1 40.0 23.8 
1 100 83.33 

 
It is important to mention that our recommendation for a correct comparison 

between 2 DL models, is that it is always necessary that they are both tested with the 
same alpha and beta values. As can be seen in Table 33 where we experimented with 
random energy consumption and test accuracy values, our APC Calculator feature is 
evaluating the performance of a DL model by considering not only the accuracy but 
also the power consumption. Therefore, DL models that consume around 50 Wh (e.g. 
when running inference on a laptop) instead of 10 Wh ( e.g. when running inference 
on a low-cost embedded platform such as the Nvidia Jetson TX2) [16], are penalized 
more severely by the APC metric. 
 Regarding the simulated experiments with the proposed APEC [20] calculator 
feature, we presented the results for different model test accuracy (%) and energy 
cost in Table 34. We run all the experiments with 0.2 as the alpha value and with 1.0 
as the beta value. 
 

Table 34. Summarized Results of the proposed APEC Calculator feature. 

Energy 
Consumption 

[Wh] 

Power Cost 
[cents EUR] 

DL Model Test 
Accuracy [%] APEC [%] 

APEC Green 
Energy [%] 

10 0.03050 99.0 98.37 99.0 
2 0.0061 99.0 98.87 99.0 
1 0.00305 99.7 99.63 99.7 
10 0.03050 99.7 99.08 99.7 
50 0.1525 99.7 96.71 99.7 
10 0.03050 94.5 93.8 94.5 
50 0.1525 50.0 45.8 50.0 
1 0.00305 50.0 49.9 50.0 
10 0.03050 50.0 49.1 50.0 
10 0.03050 40.0 39.18 40.0 
1 0.00305 40.0 39.91 40.0 
1 0.00305 100 99.93 100 

 
For simplicity, regarding electricity costs, we took Germany as an example. 

As mentioned earlier, according to “Strom Report” (based on Eurostat data) [207], 
German retail consumers paid 0.00305 Euro cents for a Wh of electricity in 2017. We 
used this value to calculate the cost of energy. As can be seen, the APEC metric favors 
lower power consumption and cost, favoring the use of green energy (free and clean 
energy). 
 Regarding the experiments with the proposed TTCAPC [20] calculator feature, 
we simulated a custom DL model on two platforms and presented the results in Table 
35. 
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Table 35. TTCAPC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1. 

 Desktop PC Nvidia Jetson 
TX2 

Accuracy 97.92 
Energy Consumption 

(Wh) 
50 10 

Rounded Accuracy 97.95 
Rounded Energy 

Consumption 50.5 10.5 

Closest APC 61.28 87.11 
Train seconds 60 

 
As can be seen, even though the accuracy and training time is the same for 

both platforms, the TTCAPC feature favors the platform which has less power 
consumption. 

Regarding the experiments with the proposed TTCAPEC [20] calculator 
feature, we simulated with the same DL model values used also in the experiments 
regarding the TTCAPC calculator earlier and presented the results in Table 36. 
 

Table 36. TTCAPEC with Accuracy delta = 0.1, Energy delta = 1, beta = 0.1, alpha = 0.1. 

 Desktop PC 
Nvidia Jetson 

TX2 

Accuracy 97.92 
Energy Cost (cents) 0.1525 0.0305 

Rounded Energy Cost 0.1525 0.0305 
Rounded Accuracy 97.95 

Closest APEC 51.46 82.96 
Closest APEC Green 

(Solar) Powered 
97.95 

Train seconds 60 
 

As can be also seen in this case, the TTCAPEC feature favors the lower power 
consumption of a system because it results in a lower cost. Additionally and more 
importantly, it favors DL-based systems that are powered by green energy, because 
they have 0 electricity costs and no negative impact on our environment. 
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6. AFFORDABLE FLYING PROBE-INSPIRED IN-
CIRCUIT-TESTER FOR PRINTED CIRCUIT 

BOARDS EVALUATION WITH APPLICATION 
IN TEST ENGINEERING EDUCATION 

 
 

Education is considered one of the most important factors that drive our 
society into new horizons, bringing new understandings of our reality and thus 
resulting in new and better technologies. Recent efforts in bringing affordable and 
equal access to education are seen also on the UN agenda, one example being the 
UN’s Sustainable Development Goals [189]. Regarding test engineering education, a 
major issue found in many of the technical schools and universities around the globe 
is the huge amount of technical books available but without giving the students also 
a chance to have a hands-on experience with real parameter values of a PCB. 
Concerning FPTs, this situation is usually the result of expensive ICT versions found 
in the industry [12], which is the leading factor for the lack of proper testing 
equipment in engineering laboratories. 

One of the main concepts that help students be familiarized with the important 
and delicate process of evaluating the performance of PCB testing measurements is 
called testability. Testability is the property of a PCB to enable the test engineer to 
easily define the electronic board checking procedure at the desired level. Generally, 
it is given by a) mechanical parameters (the shape of the populated PCB and the test 
adapter design); and b) electrical parameters (access to the test samples, test 
methods, and electrical isolation possibilities of surrounding components). ICT 
enables a very fast testing procedure where access can be made simultaneously on 
all test fields. However, this type of testing is demanding and requires a suitable 
electronic board design with test pads. 

Despite the fact that FPTs are able to perform high-speed testing with flawless 
accuracy for each tested board, incorporating the latest technologies such as 
Boundary Scan, ICT, and even Optical Inspection [219], these features require 
additional expensive hardware such as optical sensors and encoders as well as forcing 
the test engineer to reconstruct the fixture every time a new board under test is used, 
resulting in high costs and time consumption. 

Considering these aspects, in this work, we propose an efficient FPICT that 
has educational purposes and which is based on an Arduino MEGA2560 
microcontroller, three ULN2003A motor drivers with their associated 28BYJ-48 
Steppers as well as three Mechanical Endstop Limit Switches (MELS). Our education-
oriented FPICT is designed in a way to leverage the difficulties students have when 
trying to learn new concepts in the domain of test engineering. 
 
 

6.1. Hardware Components of the Proposed FPICT 
 

Our FPICT is summarized in Fig.6.1 and resembles the characteristics of a 
Flying Probe design and the operation features of a CMM. CMMs typically specify the 
position of a probe from a reference position in a three-dimensional Cartesian 
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coordinate system in terms of its displacement. Inspired by its simple yet efficient 
design, we constructed our own tridimensional platform (axis X, Y, and Z) motorized 
by Steppers which are controlled directly from an Arduino Mega 2560 mainboard. In 
this section, we provide a detailed overview of our proposed FPICT system, which can 
be divided into mechanical and electrical components. 
 

 
Fig. 6.1. Left: FPICT Mechanical Structure with Axis Array (a, b) and MELS Placement (c, d). 
Right: Complete experimental setup for the proposed FPICT. 
 
 

6.1.1. Mechanical Components 
 

The device was fixed on a parquet board that was cut according to the 
following sizes: Length (L) = 430 mm; Width (l) = 200 mm, resulting in a total space 
of A = L × l = 430 × 200 = 86.000 mm2 allocated for testing. The main platform, 
from where the three axes (X, Y, and Z) gather their reference points was mounted 
on two 190 mm long metal rods. According to Fig.6.1, our initial variant is built around 
three main axes that we will describe in the following lines: 
 X-Axis – is located at the inferior part of the main platform with the Stepper 

motor being fixed on the parquet board a). The translation from one direction to 
another is realized via a smaller cogwheel that interacts with a 130 mm long rack. 
This allows complete translation freedom equal to the length of the entire rack 
until it reaches the first MELS illustrated in the bottom part of scenario c). 

 Y-Axis – is mounted on top of the main platform and contains two metal rods 
(both 120 mm long), one of them being a screw that interacts with the Stepper 
motor on the other end, as seen in scenario a). Since the stepper motor rotates 
the screw in two distinct directions, the secondary platform (formed of a thick 
Plexiglas) will be translated according to the straight drill rule, acting like a nut 
on the screw. However, due to mechanical constraints, the translation freedom of 
the Y-axis was reduced to 50 mm until it reaches the second MELS presented in 
the top part of scenario c). 

 Z-Axis – viewed as the most complex to build of the three-axis, adopts a two-
layered Plexiglas structure and is mounted directly on the previous axis system. 
Composed of a 60 mm hexagonal nut and combined with a screw, it functions 
exactly on the same principle as the previously described Y-axis. The translation 
limit is set to ~ 20 mm, which is sufficient for the probe (nail) to touch the contact 
of the PCB. 
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6.1.2. Electrical Components 
 

Each of the three Cartesian axes (X, Y, Z) described above is controlled by 
electrical equipment consisting of a main Arduino MEGA2560 microcontroller, 3 
ULN2003A motor drivers, 3 28BYJ-48 Steppers and their MELS. We will detail each of 
the individual parts and further argue why the chosen setup is effective from the 
power consumption and cost perspectives. 

Arduino Mega is an ATmega2560-based microcontroller board with 54 digital 
input/output pins (14 of which can be used as PWM outputs), 16 analog inputs, 4 
UARTs (hardware serial ports), 16 MHz crystal oscillator, USB connection, energy jack, 
ICSP header, and a reset button. With all the listed characteristics and notably 
because of the large number of digital pins, it provides an optimal solution for complex 
projects. The board can operate on an external energy supply of 6V to 20V. However, 
if supplied with less than 7V, the 5V connector will provide less voltage while the 
board could become volatile. When using more than 12V, the voltage controller can 
overheat and damage the board. Therefore, the suggested range is between 7V and 
12V. According to around 8 hours of measurements at the USB plug with a flowing 
current of 52-54 mA, the average usage of the Arduino Mega 2560 is rated at 0,27W. 
For our project, we use a total number of 15 digital inputs/outputs to assign pins 22-
25 to the X-axis, pins 26-29 to the Y-axis, pins 30-33 to the Z-axis, and pins 46-48 
to receive feedback from the MELS. 
 ULN2003 is part of the well-known ULN200X IC series and represents a relay 
driver IC made up of an array of Darlington transistors. It consists of seven open pairs 
of Darlington collectors with prevalent emitters. In addition, ULN2003A has the ability 
to simultaneously handle seven different relays. A single pair of Darlington is made 
up of two bipolar transistors and operates between 500mA and 600mA current. 
ULN2003 operates on 5V using TTL and CMOS technologies. Its pin configuration 
provides an accessible design so that the input pins are on the left side of the IC while 
the output pins are placed on the opposite side. The chosen IC has a broad variety of 
applications being frequently used as relay drivers to drive different load types. 
ULN2003A can also be used to drive various engines (DC motors, Steppers), logic 
buffers, lamp, and line drivers LED displays and motor driver circuits. 
 The chosen 28BYHYJ-48 Steppers are lightweight engines that are generally 
incorporated into DVD drives, movement cameras, and other devices that require high 
accuracy for a set of specific functions. The engine has a 4-coil unipolar mount and 
each coil is rated at +5V, making it extremely simple to manage them with any 
traditional microcontroller. These motor types have a 5.625 ° /64 step angle, which 
means that the motor will have to take 64 steps to complete one rotation and cover 
a 5.625 ° level for each step. Usually, these stepper motors consume high current, 
thus requiring an IC driver like the ULN2003 that was listed earlier. As can be seen in 
Fig.6.1, the engine of a stepper motor has four coils: one end of the coil is tied to + 
5V (Red) and the other ends (Orange, Pink, Yellow, and Blue) are grouped together 
and linked to the header connector of the ULN2003A. The operational voltage is rated 
at 5V and hence it provides sufficient torque for moving the testing probe around the 
DUT. Only when the coils are energized (grounded) in a logical sequence the stepper 
motor is able to rotate in a certain direction. The logical sequence can be implemented 
either by using a microcontroller or a dedicated digital circuit. These types of stepper 
motors can be used in a variety of applications such as CNC machines, security 
cameras, DVD players, car side mirror tilt systems, and precise control machines such 
as our FPICT. 
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 A limit switch is known as an electromechanical element that contains an 
actuator that is mechanically connected to a set of contacts (terminals). During the 
test of a PCB, whenever the actuator interacts with a foreign object (e.g. metal object 
obstacle), the MELS device is triggered and starts sending a signal to the contacts 
(terminals) to decide if the electrical connection should be on or off (therefore, limit 
switches are practical and low-cost devices that allow the user to activate or 
deactivate a certain process when the MELS was stimulated by an external factor with 
the help of a lever-type of switch). The lever switch is wired up so that it can pull the 
signal to LOW when it is activated. The micro board also has an LED that will light up 
when the switch is activated. In our case, the MELS are used to detect endpoints for 
all three axes of the FPICT. Usually, MELS can be used together with RepRap Arduino 
Mega Pololu Shield (RAMPS) boards but can also be combined with other 
microcontrollers such as the AtMega2560. The maximum working voltage is rated at 
200V while the current can go up to as much as 2A. The MELS serves as a reference 
point from which the FPICT setup will start inspecting the DUT. 
 

6.2. Sensorless-Based Test Point Tracking 
 

The proposed FPICT process is divided into several stages that are correlated 
with Fig.6.2. 
 

 
Fig. 6.2. Flying Probe Sensorless Tracking Procedure Based on Configurable Data Files. 

 
It is worth mentioning that the FPICT procedure undergoes a number of 

preliminary preparations known as modules (Axis Calibration, Distance to Steps 
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Conversion, Variables Initialization, Coordinates, and Parameters Definition, and Main 
Program Launch) before launching the main test program. 

The Axis Calibration module sets the initial coordinates (0,0,0) of the 
Cartesian landmark that the device sketches spatially. Any mechanical imperfection 
of the constructed X, Y, Z-axes may influence the accuracy of the measurements 
made according to the values in the Coordinates and Parameters Definition module. 

Regarding the Distance to Steps Conversion module, the conversion is made 
in a unique way for each of the variables declared for testing the voltage and current. 
It is important to note that the voltage measurement procedure differs from the one 
performed for the current, in that the mobile probe is connected to a single analog 
input A0 of the Arduino Mega board and the voltage value is obtained by measuring 
the test point which is always connected to the ground point. In this case, the test 
program requires only three local variables denoted by Dist_X_mm, Dist_Y_mm, and 
Dist_Z_mm, representing the distance of each axis to the origin of the Cartesian 
system. In the case of current measurement, at least two test points from where the 
values are collected through the main program are required. As a result, a set of 
variables noted with Dist_X1_mm, Dist_X2_mm, Dist_Y1_mm, Dist_Y2_mm, and 
Dist_Z_mm are declared, where the pair (X1, Y1) designates the first coordinates 
target point, the pair (X2, Y2) refers to the second test point and Z is the same 
because the height from which the probe drops stays always constant throughout the 
test. Because we use Stepper motors to move the axes, the test program will have to 
translate the values of distances in steps according to the following formula (6.1): 
 
DistXStep DistXmm StepsPerMM                                                             (6.1) 
 
where DistXStep represents the number of steps obtained by multiplying the 
Cartesian distance DistXmm by the value of the distance in millimeters executed by 
a single step of the StepsPerMM engine (variables to which we will return to with 
further explanation in this section). Additionally, because the Arduino Mega board has 
a built-in ADC, the implicit conversion of the parameters entered by the user in the 
same module is performed. The ADC on the Arduino is a 10-bit ADC, which means 
that it has the ability to detect 1.024 (210) discrete analog levels. Some 
microcontrollers have 8-bit ADCs (28 = 256 discrete levels), and others have 16-bit 
ADCs (216 = 65.536 discrete levels). Thus, the converter generates a ratiometric value 
because the ADC assumes that 5V is 1.023 discrete levels, and any value less than 
5V (1.023 discrete levels) will be a ratio between 5V and 1.023 discrete levels. The 
result of the ADC in our case will be retained in a variable that appears in the relation 
(6.2): 
 

1023

5

ExpectedVoltage
CountExpectedVoltage




                                            (6.2) 
 
where CountExpectedVoltage will count the measurements with the expected results 
from the tests performed. 

Regarding Variables Initialization, this module covers two types of variables 
used: global and local. Due to the size and complexity of our code, we will list the 
most important variables. The global variables can be called anywhere in the code 
and allow a flexible modification by the domain expert: 
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 STEPS_PER_REVOLUTION – shows the total amount of motor steps for one 
complete rotation (360 degrees). According to the Stepper user manual, the 
recommended value is 2048 

 MOTOR_SPEED1 – the value of the speed set for the first Stepper motor 
corresponding to the X-axis, with a default value of 15 

 MOTOR_SPEED2 – the value of the speed set for the second Stepper motor 
corresponding to the Y-axis, with a default value of 15 

 MOTOR_SPEED3 – the value of the speed set for the third Stepper motor 
corresponding to the Z-axis, with a default value of 13 

 MM_PER_STEP – the value in millimeters associated with a step executed by the 
Stepper motor. In order to determine this value, a trial and error experiment was 
used which resulted in 0.10 mm / step 

 TOTAL_CURRENT_PARAMS – the total number of parameters associated with the 
current measurement, with a set value of 4 

 RES_CUR_MEASURE (RESCURMEASURE) – the resistance expected in Ohms 
between the two test points (X1, Y1) and (X2, Y2) for measuring the current 

 STEPS_PER_MM – is a set value that approximates the number of steps performed 
per millimeter. The value found (determined by trial and error) was 100 

Local variables are the elements that underlie data processing such as the 
considered distances and the parameters targeted for verification. Dist_X1_mm, 
Dist_Y1_mm, Dist_X2_mm, Dist_Y2_mm, Dist_Z_mm are the distances from the 
reference point to the two test points associated with the measurement of the current, 
respectively Dist_X1_step, Dist_Y1_step, Dist_X2_step, Dist_Y2_step, the steps 
corresponding to the aforementioned distances. Variables volExpectedL and 
volExpectedH are float-type variables for setting a sensitive threshold for voltage 
measurements, while CountExpectedL and CountExpectedH will monitor the number 
of parameters outside the range of allowed values for each test. Additionally, 
curExpectedL and curExpectedH achieve the same minimum and maximum threshold 
but only for current measurement. 
 Regarding Coordinates and Parameters Definition, the set of variables and 
parameters stated above will continue to be composed in the form of configurable 
structures that are visible to the average user. For an easier understanding, all the 
data that is needed to test the voltage and current were organized in cells, as can be 
seen in Table 37. 
 
Table 37. Example of the configuration structure for measuring voltage and current on the 
selected test points. 

Parameter 
Number 

Cartesian Coordinates (mm) 

Current 

Voltage Measuring  Voltage Measuring 

DIST X1 DIST Y1 DIST X2 DIST Y2 DIST Z 

1 16.80 11.40 ... ... 14 

2 19.99 8 ... ... 14 
3 19.96 8 ... ... 14 

4 37.03 18.80 ... ... 14 

5 38 18.95 ... ... 14 

 

Parameter Description 
Assigned 
Pins (for 
Voltage) 

Targeted Microchip 
Low 
[V] 

High 
[V] 

Low 
[mA] 

High 
[mA] (for 

Voltage) 
(for 

Current) 
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1 7 AtMega328 ... 4.5 5 ... ... 

2 20 AtMega328 ... 4.5 5 ... ... 

3 21 AtMega328 ... 4.5 5 ... ... 
4 31 AtMega16u2 ... 4 5 ... ... 

5 32 AtMega16u2 ... 4 5 ... ... 
 

The verification can be performed for various areas on the test board, which 
in our case is an Arduino UNO with two microchips of interest: Atmega328 and 
Atmega16u2. Both micro-devices must be powered at a voltage not exceeding 5V and 
generally not falling below 4V. Each deviation from the range of values considered 
critical (less than 4V and greater than 5V) according to the specialized catalog, can 
lead to a decrease of the performance (if it falls below 4V) or even to the failure of 
the board (if it exceeds 5V value). Additionally, the user will be able to enter the data 
needed to test the current parameters in the cells where the free space is represented 
by dots. 

Regarding the Main Program Launch, this module can be started directly from 
the Serial Monitor window in the Arduino IDE Suite Interface. Following the 
configuration of the preliminary values (Cartesian distances as well as the values of 
the voltage and current parameters), the main algorithm will move the calibrated 
probe from the considered reference point to the first test point. An example of a 
compact execution line for a voltage parameter during testing (which is very efficient 
also regarding memory) is presented in Fig.6.3. 
 

 
Fig. 6.3. The configuration file structure of an execution line for a voltage parameter. 

 
 Once the test point is reached, the probe will collect the voltage value through 
the analog input A0 which is converted according to formula (6.2) into the binary 
system. Then, it is compared with the LowVoltage minimum value and the 
HighVoltage maximum value, in order to decide if the parameter is within the imposed 
limits (between 4 and 5V). Once the first value is measured, the moving probe will 
move to the reference point to continue the measurement for the next number of 
nodes. The same procedure is repeated for all the test points in Table 37, up to the 
last value, in order to generate a complete report with the situation of each node (test 
point) separately. 
 

2 1
1000

voltage voltage
curmA

RESCURMEASURE


 

                                                      (6.3) 
 

According to formula (6.3) presented above, the mobile probe will have to 
collect the values of the voltages from the ends of the resistor and to divide their 
difference by the global variable declared earlier regarding the Variables Initialization 
module, namely RES_CUR_MEASURE (RESCURMEASURE). The determined value of 
the current will be compared with the two values in the tolerance field, in order to 
check if it is within the limits imposed by the user. 
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6.3. Experimental Setup and Results 
 

The most fundamental resources needed when designing effective FPT are 
probe positioning, measurements, test tools, development tools, and time. These 
resources are taken into account also by our final prototype seen on the right side of 
Fig.6.1 and were obtained by analyzing the experimental dataset summarized in Table 
38. 

 
Table 38. Single Point, Multiple Point, and Measurement Testing Results. 

Test Type 
No. of Test 
Samples 

(Parameters) 

Precision 
Testing 

(%) 

Average 
time per 
test cycle 

[s] 

System Power 
Consumption 

[W] 

Idle Active 

Single Point 
Testing 

500 100 10.35 
 

0.360 
 

3.895 

Multiple Point 
Testing 500 91.40 62.69 3.850 

Measurement 
Testing 1000 95.70 1.53 4.027 

 
 The entire input dataset was determined by consulting the specialist catalog 
of the Arduino board for the optimal operating sizes (voltage and current). The 
Cartesian coordinates were measured using a digital caliper with the precision of 
hundreds of millimeters from the chosen reference point. In terms of power 
consumption, measurements were made with the multimeter, both with the laptop 
connected via USB to the Arduino Mega as well as just with the proposed FPICT alone 
(without a laptop). In the idle state, with the laptop connected, our FPICT device 
consumed 72mA at a 5V power supply voltage, resulting in power consumption of 
0.36 W for all test scenarios. In the active state, with the X, Y, Z-axes in motion, and 
the laptop connected, the current consumption increased to 686mA at the same 
supply voltage, thus achieving a power consumption of 3.43W. The average values 
for all test types are shown in Table 38. 

The success of testing a parameter (voltage or current) is in principle given 
by the positioning accuracy of the mobile pin and the ability of the FPT probe to 
correctly read the value of the voltage or current on the already reached pin. As can 
be seen from Table 38, the positioning accuracy when checking a single test point 
shows that our FPICT is capable of reaching maximum accuracy (100%), whereas, in 
the case of checking several nodes on the test board, the accuracy decreases in some 
proportion (91.40%), either from mechanical impediments that need to be revised or 
from the inability of the probe to take the voltage value correctly from the tested pin. 
The average accuracy obtained for all measurements was 95.70%, a relatively good 
percentage for a device built from low-cost components. The average time per test 
cycle (s) noted in Table 38 was determined for single test points and the entire test 
set composed of 5 parameters. Thus, 10.35 seconds were obtained for a fixed test 
point, with coordinates set from repeated tests and an average of about 1 minute for 
all 5 test points, each with different coordinates and distances from the reference 
point. The measurement time of the probe was estimated to be around one and a half 
seconds (1.53s). 
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7. TECHNOLOGICAL SOLUTIONS FOR 
THROUGHPUT IMPROVEMENT OF A SECURE 

HASH ALGORITHM-256 ENGINE 
 
 

In this chapter, we will present our work published in [23] which describes a 
set of techniques for improving the performance of a SHA-256 hardware 
implementation. The proposed solution reduces the latency incurred for updating the 
intermediate hash values and relies on using combinational tree structures of CSAs 
interconnected in a Wallace tree manner for multi-operand addition. Furthermore, the 
chapter investigates the throughout improvement provided by a combined 
implementation of architecture’s binary adders with the round functions used by the 
hash computation process. The proposed acceleration techniques can be adapted to 
the other members of the SHA-2 family of algorithms. The architecture represents a 
case study for hardware optimization based on different combinational structures for 
binary addition and the effect of the carry propagate layer on the overall performance. 
The synthesis results of the proposed designs are provided as support for the 
performance analysis presented in this work. 
 
 

7.1. Throughput Improvement Solutions for SHA-256 
 

The hardware implementations of the SHA-2 hash functions, in general, and 
of the SHA-256 algorithm, in particular, are benefiting of higher throughput and of a 
comparatively more secure computing platform when compared to their software 
counterparts. The literature contains references of dedicated hardware architectures 
for offloading the computational-intensive operations of hash calculation in order to 
obtain higher throughput [220], [221]. The effect of hash computation over the 
system’s throughput is, in particular, relevant for the case of servers offering services 
based around IPSec and SSL/TLS, for which the hash calculation latencies become a 
limiting factor in servicing all received requests. In this context, constructing a 
customized hashing accelerator relieves the CPU in such a server from computing 
hashes, allowing it to attend other tasks and thus, optimizing the clock cycles usage. 

Another reason for implementing the hash computation in hardware relates 
to security. Software implementations of a hash function, running on a general-
purpose processor, oftentimes lack the physical protection found in hardware 
implementations due to the relative ease with which an attacker is capable of 
inspecting and even modify the software implementation. Moreover, the intrusion can 
even be set up concurrently with the system’s utilization, while the cryptographic 
application is operational, this being achieved by using debugging software. In the 
same class of attacks against software implementations of cryptographic functions 
can be mentioned the timing attacks and the cache attacks customized for breaking 
the security of other cryptographic services as well [222]. 

The SHA-256 architecture constructed in this chapter is an iterative design, 
instantiating one round of the message scheduler and one round of the data 
compression stage in hardware. The reason for including a single iteration in hardware 
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was to provide a rigorous comparison framework for other acceleration techniques, 
presented in the literature. 

The message padding and parsing steps can be implemented either in 
hardware or in software and are not considered. The basic design is depicted in Fig. 
7.1. The first architectural optimization that can be applied to a hardware realization 
of SHA-256 and the first design decision in our proposed architecture targets the 
message scheduler. Similar to other hardware designs for SHA-256 found in the 
literature, the architecture proposed in this chapter stores, at any given moment, only 
16 words of the message scheduler, instead of providing storage space for all 64 
words. This reduction in storage requirements can be realized because the relation 
used for calculating the next word of the message scheduler makes use of 4 words, 
all 4 being calculated no later than 16 iterations ahead [66]. 
 

 
Fig. 7.1. The basic architecture for SHA-256. 

 
Moreover, because the first 16 words of the message scheduler are the very 

16 words of the 512-bit input block, the hardware design for the message scheduler 
stores the input block into the 16 words, at the beginning of a block processing. After 

delivering the word , the message scheduler calculates the next one and shifts the 
least significant 15 words to the left in order to append the newly calculated value. 
 The message scheduler consists of the modules in the top part of Fig.7.1 in 
which, for clarity, some of the 16 registers storing the message scheduler words were 
omitted. In Fig.7.1, the “COUNTER” unit is a 6-bit iteration counter keeping track of 
the current algorithm’s round. By means of the multiplexing layer connected on the 
inputs of the message scheduler registers, either the initial 512-bit block or the shifted 
content is delivered. The word generated by the scheduler each iteration is stored in 
the least significant position and its calculation delimits the critical path for the 
message scheduler. The middle register layer of Fig.7.1 is made up of the 8 registers 
storing the working variables, each having the associated variable symbolized next to 
its output.  

0W
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One advantage of the SHA-256’s hardware realizations over software is the 
straightforward use of concurrent processing. To this avail, the message scheduler 
and the data compression stages can be run in parallel because they both are iterated 
64 times. The first iteration of the data compression stage makes use of the first word 
of the message scheduler. By the time the scheduler delivers the first word it has 
already stored the first 16 words and, concurrently with the first iteration of the data 
compression loop, the scheduler starts calculating the 17th one. It is for this reason 
that both register sets, storing the message scheduler words and the 8 working 
variables, are controlled by the same loading signal.  

The current word of the message scheduler to be used by the data 
compression engine is in the most significant position, as depicted in Fig.7.1 and 
because of the content shifting of the scheduler’s data words, by the time the last 
data compression iteration is executed, the scheduler will have generated 15 

additional words, besides the last one, 63W . These 15 words will not be used by the 
hash computation. The computation of these words can be avoided; however, it would 
require additional hardware investment in selecting the current data to be delivered 
to the hash computation stage. Additional investment would be needed for disabling 
the load signal for the message scheduling unit. For an increased throughput 
architecture, the decision to have a common control line for loading the registers of 
the message scheduler and those storing the working variables, and being able to 

directly deliver word 0W  to the data compression unit is preferred, to the expense of 
computing 15 unused words. 

The content of the 8 registers storing the working variables is updated either 
with the current hash value or with the new values generated by the data compression 
round. The multiplexors selecting the input of the working variable registers use the 
same selection line as those selecting the input for the scheduler registers because 
the two sets of registers are initially updated from alternate sources and they are 
initially updated at the same moment, at the beginning of the 64 iterations. The critical 
path of the hash engine in Fig.7.1 contains the components used for calculating the 
next value for working variable a and includes the modules evaluating the 4 round 

functions (
{256}
0 , 

{256}
1 , Ch and Maj), which operate in parallel, followed by the 7-

operand, modulo 232 adder calculating the next value for a and followed by the 
multiplexer delivering the new value to the corresponding working variable register. 

The final storage layer is made up of the 8 registers keeping the current hash 
value. The 8 registers are updated at the end of the 64 data compression iterations 
by adding the value of the working variables to their current content. Eight modulo 
232 adders are required for this operation. In addition, the hash value update demands 
one supplementary clock cycle, thus directly affecting the latency and the throughput 
of the SHA-256 unit.  

The first throughput acceleration technique proposed in this chapter for the 
SHA-256 architecture reduces the number of cycles used for processing a 512-bit 
block by eliminating the previously mentioned hash update operation, performed at 
the end of the data compression’s loop. To achieve this, the last of the 64 iterations 
will have to update not only the working variables but the hash registers as well. In 
consequence, the final round of the data compression phase will have to additionally 
include the current hash value among the operands added together, in order to be 
able to generate the next hash value. In addition to this computation strategy, the 
current hash value does not need to be loaded into the working variable registers at 
the start of a new block’s processing. This is because the working variables were 
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already updated with the same data as the hash registers in the last round of the data 
compression stage. However, this observation does not facilitate a further reduction 
of clock cycles because, typically, the loading of the new 512-bit block is performed 
concurrently with the update of the hash registers.  

The manner in which the proposed architecture is updating the working 
variable registers and the hash registers is depicted in Fig.7.2, in which only the 
modules pertaining to the data compression phase were included. The message 
scheduler remains unmodified as in Fig.7.1, together with the control signals 
commanding the scheduler’s operation. 
 

 
Fig. 7.2. Proposed architecture for SHA-256 hash calculation. 

 
 Because the addition of the current hash value is performed only in the last 
iteration, the content of the hash registers is enabled only once by means of an AND-
gate layer, commanded by the gating signal update_hash, in Fig.7.2. The gating signal 
is, in fact, the signal enabling loading of the new hash value into the hash registers 
after the data compression is finished. The critical path for this new design follows the 
signals’ propagation through the 4 round functions, followed by the 8-operand modulo 
232 adder. The multi-operand adder architecture used throughout this article is a CSA 
based tree structure, organized in a Wallace manner [57] that generates the non-
redundant sum by a final CPA. Because the addition of the operands is performed, for 
SHA-256, modulo 232, all CSAs are on 32 bits and, since the carry vector is one 
position more significant than the sum vector, the most significant carry generated 
by a CSA level is omitted. As a result, the CPA module is also on 32 bits. However, 
due to the manner in which latency is propagated through the Full Adder Cells (FACs) 
of a CSA, the critical path of a CSA tree structure is considerably reduced only if a 
fast adder is used for CPA, avoiding serial propagation of the carry [223]. Because of 
this, a fast 32-bit Kogge-Stone [224] adder is used for the CPA level throughout this 
chapter. The replacement of the 7-operand adder in Fig.7.1 by the 8-operand addition 
structure from Fig.7.2 affects the adder’s critical path only marginally, as the 
experimental results reveal. 

The technological factor has an important influence on the synthesis result. 
With respect to this aspect, another latency incurring element in the architecture of 
Fig. 7.2 is the fan-out of the gating signal controlling the AND-gate layer. The fan-out 
of the update_hash signal is large due to its controlling the hash registers’ load line 
and the gating layer. The large fan-out has an adverse effect on the critical path, in 
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that, depending on the standard cell library used for synthesis, the update_hash 
signal’s distribution tree can have a delay larger than the latency of the structures 
operating the 4 functions and the 8-operand adder together. 

Further investigations evaluated alternative multi-operand addition structures 
and the effect of ordering addition’s operands over the critical path. More precisely, 
in order to further improve the performance of the hash core, we investigated the 

possibility to implement the 
{256}
0 , 

{256}
1 , Ch and Maj functions in a combined manner 

with the multi-operand adders present in the architecture. The 4 functions are part of 
the critical path and reducing their number of logic levels improves the overall latency.  

Fusing any of the 4 functions with the 32-bit CSAs is limited in outcome by 
the relatively simple structure of the FACs. However, considering the delay balancing 
technique introduced in [144], the fused implementation of the 4 functions with the 
CPA has a larger potential for latency improvement. Fig.7.3 illustrates a detail of the 

fused design combining variable a, in redundant form, with hash word 0
iH , also in 

redundant form, with the hash word 1
iH , the working variable b, and with the working 

variable c. The fused module calculates 
{256}
0  and Maj functions together with the 

next working variable b. 
 

 
Fig. 7.3. Detail of the fused architecture. 

 
 Regarding the delay balancing implementation used in our proposal, it is 
applied for both working variables a and e, whereas Fig.7.3 illustrates this approach 
only for a. The method requires doubling the registers storing the two variables into 

sum-carry pairs of registers. The corresponding hash value registers, 0
iH  and 4

iH , 
need to be doubled as well in order to preserve the critical path reduction (otherwise, 
if the hash registers would not be doubled, dedicated CPAs would be needed for 
generating the non-redundant hash words which would defeat the purpose of delay 
balancing). As a result of using two registers for storing the redundant form of the 

hash word 0
iH , the multi-operand adder with 8 inputs from Fig.7.2 is replaced by a 

9-operand redundant adder which will store the sum in the register pair (a_c, a_s), 
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for a’s carry and sum vectors. Another consequence of storing 0
iH  in redundant form 

is that it requires a CPA for calculating the word of the final digest, adder that is visible 
in Fig.7.3 as well. 

Concerning the fused implementation, the sigma functions, 
{256}
0 and 

{256}
1 , 

are composed of three rotations of the input words, each, followed by Exclusive-OR 
(EXOR) on the rotated vectors. The functions inputs are generated by the engine’s 
CPAs and for achieving a combined implementation, the functions evaluation will be 
embedded in the CPAs. More precisely, for a Kogge-Stone adder, the carry bits are 
calculated by a tree structure and they are EXOR-ed with the half sum bits (EXOR 
result of input operands). Because the sigma functions employ the same EXOR 
operator, their results can be speeded up by balancing the EXOR tree. This solution 
removes one level of EXOR gates compared to the unfused approach. The Maj and Ch 
functions can be expressed in terms of the faster AND/OR primitives as: Maj(a,b,c)=a 

AND (b OR c) OR (b AND c) and Ch(e,f,g)=(e AND f) OR ( e  AND g). The negation 

of e is constructed by negating the half sum bits and EXOR-ing the result with the 
carry bits inside the Kogge-Stone CPA, for a rapid output generation. A final approach 
towards throughput improvement is to reorder the multi-operand adders’ inputs in 
order to connect the signals generated at a later time on positions affected by smaller 
latencies. By means of synthesis results, the latest operands are identified and are 
correspondingly connected to the minimum delay inputs of the adder tree. 
 
 

7.2. Experimental Results 
 

All presented designs were modeled in Verilog and synthesized using the 
Design Compiler with the IIT Standard Cell Library for TSMC 0.18µm [225]. The 
synthesis results are presented in Table 39 for the basic architecture, together with 
the proposed and fused designs. The basic architecture uses as little of the throughput 
enhancing techniques as possible to prove that the analyzed techniques can be 
applied in conjunction with most of the other existing acceleration methods. 
 

Table 39. SHA-256 Architectures Comparison. 
Architecture Max Frequency [MHz] Area [µm2] Throughput (Mbps) 

Basic 326.80 480625 1287.08 

Proposed 357.14 529690 1428.57 

Fused 380.23 562704 1520.91 

 
The basic architecture of Fig. 7.1 uses a multi-operand CSA adder tree, a 

Ripple Carry Adder for the final CPA layer, and process a 512-bit block in 65 cycles. 
Although it requires the smallest area, the basic design is also the slowest one. The 
proposed design refers to the architecture described in Fig. 7.2. It makes use of the 
hash registers gating technique, uses 8-operand and 7-operand adders for generating 
variables a and e, respectively, and requires only 64 iterations for a 512-bit block 
processing. The 10% performance improvement is obtained at the expense of 
increased area. Finally, the fused architecture takes advantage of the combined 
implementation of the 4 SHA-256 round functions with the existing CPAs yielding a 
performance increase of about 18% at the expense of a larger area overhead. 
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8. CONCLUSIONS AND FUTURE WORK 
 
 

The AI revolution is happening and thanks to DL, better applications that 
surpass the human accuracy level are implemented day by day in many domains and 
industries. However, DL not only that it requires a high power consumption that 
results in high costs, but it also contributes to the carbon footprint, having a negative 
impact on our environment. To address these problems, we present solutions for 
powering and evaluating DL-based systems based on green energy. 

This Ph.D. thesis focuses on eliminating the energy cost by not only building 
a dual-axis solar tracker in order to power a real-time DL-based system using solar 
energy but also on proposing environmentally-friendly metrics regarding inference 
and training.  

Chapter 3 presents different DL applications that solve different problems 
related to fraud and security. 

The first application created is, to the best of our knowledge, the first 
application that successfully detects receipt fraud, a common problem that occurs in 
many hypermarkets/supermarkets around the world. We implemented an OCR 
algorithm composed of image processing techniques and two CNN models into a 
smartphone application that helps the customers (in case of a wrong product price on 
the bill) as well as the supermarket employees (in case of different prices for products 
at the shelf compared to the prices stored in their computer system) to have 
(customer pays the correct price) and offer (ability to immediately update the correct 
price at the shelf) a better shopping experience. Experimental results show that the 
proposed CNN models have 99.96% test accuracy in identifying product prices and 
99.35% test accuracy in identifying receipt prices, proving that our application can be 
used successfully in discovering wrong prices between a price tag belonging to a 
product seen at the shelf and the price paid after receiving the bill from the cashier. 
As future work, we plan to improve our CNN models to recognize also prices with 
multiple font types, from different hypermarkets/supermarkets that may use a 
different position of the two decimals in their prices. Additionally, to be able to detect 
characters representing the product name or identify the prices not only from images 
but also in real-time from videos. Finally, we plan to create a real-time application 
that is able to calculate special offers and indicate if buying in bulk is cheaper than 
buying a single piece of a particular product [150], [151]. 

The second application introduced a novel approach for identifying and 
classifying the Romanian traditional motifs found on 4 different categories (clothes, 
ceramics, carpets, and painted eggs) by training a CNN model on a modified ResNet-
50 architecture. We also implemented a system that can detect and identify through 
a webcam if the object in front of it contains a learned motif. In the experimental 
results, we show that 5 categories from which 4 containing Romanian traditional 
motifs (e.g. carpets, ceramics, clothes, painted eggs) are being detected and 
identified with high accuracy and reduced processing time. We obtain an overall 
accuracy of 99.4% and proved that with the implemented Grad-CAM technique, the 
proposed CNN model brings more interpretability, transparency, and trust. As future 
work, we intend to implement our model on the cloud and develop a mobile application 
in order to detect and identify the Romanian traditional motifs with the help of a 
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smartphone in real-time. Additionally, to create an IA Dataset which contains all 
Romanian traditional clothes organized by the regions in Romania they originate from. 

The third application presents a method for identifying 34 animal classes 
corresponding to the most conventional animals found in the domestic areas of Europe 
by using four types of CNNs, namely VGG-19, InceptionV3, ResNet-50, and 
MobileNetV2. We also built a system capable of classifying all these 34 animal classes 
from images as well as in real-time from videos or a webcam. Additionally, our system 
is capable to automatically generate two new datasets, one dataset containing textual 
information (i.e. animal class name, date, and time interval when the animal was 
present in the frame) and one dataset containing images of the animal classes present 
and identified in videos or in front of a webcam. Our experimental results show a high 
overall test accuracy for all 4 proposed architectures (90.56% for the VGG-19 model, 
93.41% for InceptionV3 model, 93.49% for the ResNet-50 model, and 94.54% for 
MobileNetV2 model), proving that such systems enable an unobtrusive method for 
gathering a rich collection of information about the vast numbers of animal classes 
that are being identified such as providing insights about what animal classes are 
present at a given date and time in a certain area and how they look, resulting in 
valuable datasets especially for researchers in the area of ecology. 

Chapter 4 presents the construction, testing, and deployment of our solar 
tracker in order to make use of renewable and clean energy when powering a real-
time DL-based system that can identify animal classes, store their textual information 
as well as their pictures in real-time without having to pay for electricity bills. 

Regarding the construction part, we proposed a novel approach in the field of 
renewable energies by designing an efficient solar tracking device composed of an 
Arduino UNO board, two stepper motors, a pair of specialized L298N circuits, and an 
optocoupler. We present a sensorless energy-saving solution based on the Cast-
Shadow principle and a low-cost blocking mechanism for the stepper motors to reduce 
the overall power consumption of the system by 86.93%. Additionally, the 
experimental results of our autonomous solar tracker show a 45.77% voltage, 
48.21% current, and 53.62% power increase over the static PV panel by using 
monocrystalline solar cells. 

Regarding the testing part, first, we presented a novel technique in testing 
the software code of a solar tracking device by using a White-box testing approach 
that makes use of a Wi-Fi module. We succeed in verifying if the wireless data 
transfers controlling the movements of the solar tracking device are in 
correspondence with the software code run on the Arduino Uno. In order to find out 
all the loopholes and possible breakpoints in our solar tracker software, we 
investigated Communication and Calculation Errors, Control Flow, and Error handling 
faults by implementing unit testing techniques as well as custom code. Experimental 
results show that the proposed White-box testing strategy achieves a total coverage 
of 70.12% for all targeted errors from a total number of 4334 test cases organized in 
4 batches and proves to be efficient from the fault coverage as well as the cost point 
of view. 

Secondly, we proposed an OBIST architecture that uses an LFSR as a TPG and 
a MISR as a result gatherer for testing our solar tracking equipment composed of an 
Optocoupler, an Arduino UNO, and two L298N Dual-H Bridges ICs. Due to the 
proposed fault injection strategy, we concluded that all 4 CUTs are prone to hardware 
faults and thus we implemented software as well as hardware solutions for the 
proposed OBIST. Experimental results show that the software implementation is 
efficient in injecting test vectors and collecting the outputted signatures of the MISR 
device. In addition, we constructed a valid signature database for 3 of the CUTs and 
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compared the MISR valid output signatures with its previous generated pseudo-
random output values, resulting in 93.93% coverage for single bit-flip errors (last 8 
bits, mutant) and 100% coverage for single stuck-at-faults (for 8, 12 and 16 random 
bits). Finally, the proposed OBIST achieves a total global coverage of 96.96% for the 
targeted errors, resulting in an efficient architecture regarding coverage and cost 
points of view. 

Regarding deployment, we presented, to the best of our knowledge, the first 
solar-powered real-time DL-based system in the literature that is self-sustaining from 
the energy point of view, can run inference using 100% solar energy, and which is 
composed of a dual-axis solar tracking device based on Cast-Shadow principle [17] 
and a low-power embedded platform called Nvidia Jetson TX2. In order to justify the 
minimal improvement costs of the solar panel as well as the choice of this embedded 
platform, experimental results, especially regarding the energy consumption while 
running 4 DL model architectures (VGG-19, InceptionV3, ResNet-50, and 
MobileNetV2) in real-time [15] are made also on a laptop containing the Nvidia GTX 
1060 (6GB) GPU. Additionally, in order to reduce the power consumption of the entire 
solar-powered real-time DL-based system, we also implemented a motion detection 
method that triggers the inference process only when there is movement in the frame. 
Details about the construction of the entire solar-powered real-time DL-based system 
as well as calculations regarding the time needed for our accumulator to be charged 
with solar energy as well as discharged by the Nvidia Jetson TX2 when running the 4 
DL models are also taken into consideration. Experimental results show that the Nvidia 
Jetson TX2 platform is a very good choice when designing an efficient solar-powered 
real-time DL-based system, consuming only around 10 Wh of power as compared to 
around 50 Wh consumed by a laptop. 

As future work, we plan to run similar experiments also on other low-power 
platforms such as the Nvidia Jetson Nano Developer Kit, Google Coral, Raspberry Pi 4 
Model B (4GB), and also on FPGAs, in order to show that real-time DL-based systems 
can run inference 100% on solar energy using even less energy than we 
demonstrated. Additionally to inference, we also want to train a few other state-of-
the-art DL model architectures using 100% solar energy from our solar tracker on the 
above-mentioned platforms, with the intent to encourage new researchers to 
investigate the combination of green energy and AI, eventually proposing new green 
energy-based DL metrics. We believe that a “green” approach can lead researchers 
to a better understanding of how to evaluate the performance of DL-based systems 
and will also result in a more friendly and respectful attitude towards nature and life 
on this planet. 

In Chapter 5, first, we introduce four metrics, two for inference called APC 
and APEC, and two for training called TTCAPC and TTCAPEC for evaluating the 
performance of DL models and systems not only regarding their accuracy but also 
their energy consumption and cost. In our experimental results, we succeeded to 
prove that all four metrics are efficient, showing, to the best of our knowledge, for 
the first time in literature, that by using high accuracy together with low power 
consumption, especially green energy (e.g. solar energy) during training and 
inference, a DL model or system is evaluated as being much more performant than 
one that, despite having the same accuracy, consumes more energy and uses a 
traditional power grid (paid electricity). We believe that these metrics will encourage 
future researchers to develop and use greener energy-based systems and that they 
will evaluate their performance only based on how “green” they are and how less 
negative impact they have on our planet. 
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Secondly, we present a Computer Vision application that succeeds in bringing 
common DL features needed by a user (e.g. data scientist) when performing image 
classification related tasks into one easy to use and user-friendly GUI. From 
automatically gathering images and classifying them each in their respective class 
folder in a matter of minutes, to removing duplicates, sorting images, training and 
evaluating a DL model in a matter of minutes, all these features are integrated in a 
sensible and intuitive manner that requires no knowledge of programming and DL. 
Experimental results show that the proposed application has many unique advantages 
and also outperforms similar existent solutions. Additionally, this is the first Computer 
Vision application that incorporates the APC, APEC, TTCAPC, and TTCAPEC metrics 
[20], which can be easily used to calculate and evaluate the performance of DL models 
and systems based not only on their accuracy but also on their energy consumption 
and cost, encouraging new generations of researchers to make use only of green 
energy when powering their DL-based systems [16]. 

In Chapter 6, we propose a low-cost and portable FPICT device that was able 
to reach 100% precision in single-point testing, 91.40% precision in multiple-point 
testing, and overall precision of 95.70% for the entire measurement testing. We 
believe that, due to the simplicity of our proposed FPICT and user-friendliness as 
compared to the ones found in the industry, students will find learning and practicing 
the testing of PCBs to be more fun and interesting experience. The proposed FPICT 
has several advantages, mainly that it is very easy to learn and use, especially 
because of the C written configuration files (e.g. which can be easily modified by the 
students in a laboratory), it has a friendly user interface and can be also quickly 
connected to any existent computing platform that has a USB port (Desktop PCs, 
laptops, tablets). Also, the proposed FPICT provides students easy access to study 
and experiment with the inner workings of an FPT when operating on a real PCB board, 
which otherwise would have been almost impossible, given the fact that the FPTs 
found in the industry are very expensive (i.e. thousands of dollars [12] compared to 
our FPICT which costs around 25 dollars and require no extra costly licenses). 

As future work, we plan to combine the proposed FPICT with other testing 
methods such as Boundary Scan in order to test the entire circuitry of the proposed 
solar tracking equipment based on the Cast-Shadow principle and to show the 
different types of errors that can occur. 

Chapter 7 presents several acceleration techniques for improving the 
throughput of an SHA-256 engine. The first acceleration technique eliminates the 
clock cycle used for hash value update and allows delivering a higher throughput due 
to the marginal performance loss associated with using an 8-operand adder instead 
of a 7-operand one. The second technique for improving performance implements the 
CPAs of the multi-operand adders in a fused manner to speed up the generation of 
the round functions. The proposed, fused design further increases the hash engine’s 
performance while the synthesis driven approach for arranging the operands’ order in 
the CSA tree further reduces the critical path. In addition to their performance 
improvements, the presented techniques can be applied in conjunction with other 
methods presented in the literature, such as loop unrolling, data precomputation in 
the previous round, to name only a few. 

As future work, we plan to combine these techniques with other encryption 
algorithms in order to increase the security of DL-based systems that store sensitive 
and confidential data such as that belonging to pneumonia or COVID-19 patients. 
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